MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpsucnnl Structured version   Visualization version   Unicode version

Theorem relexpsucnnl 13172
Description: A reduction for relation exponentiation to the left. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpsucnnl  |-  ( ( R  e.  V  /\  N  e.  NN )  ->  ( R ^r 
( N  +  1 ) )  =  ( R  o.  ( R ^r  N ) ) )

Proof of Theorem relexpsucnnl
Dummy variables  n  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6315 . . . . . 6  |-  ( n  =  1  ->  (
n  +  1 )  =  ( 1  +  1 ) )
21oveq2d 6324 . . . . 5  |-  ( n  =  1  ->  ( R ^r  ( n  +  1 ) )  =  ( R ^r  ( 1  +  1 ) ) )
3 oveq2 6316 . . . . . 6  |-  ( n  =  1  ->  ( R ^r  n )  =  ( R ^r  1 ) )
43coeq2d 5002 . . . . 5  |-  ( n  =  1  ->  ( R  o.  ( R ^r  n ) )  =  ( R  o.  ( R ^r  1 ) ) )
52, 4eqeq12d 2486 . . . 4  |-  ( n  =  1  ->  (
( R ^r 
( n  +  1 ) )  =  ( R  o.  ( R ^r  n ) )  <->  ( R ^r  ( 1  +  1 ) )  =  ( R  o.  ( R ^r  1 ) ) ) )
65imbi2d 323 . . 3  |-  ( n  =  1  ->  (
( R  e.  V  ->  ( R ^r 
( n  +  1 ) )  =  ( R  o.  ( R ^r  n ) ) )  <->  ( R  e.  V  ->  ( R ^r  ( 1  +  1 ) )  =  ( R  o.  ( R ^r 
1 ) ) ) ) )
7 oveq1 6315 . . . . . 6  |-  ( n  =  m  ->  (
n  +  1 )  =  ( m  + 
1 ) )
87oveq2d 6324 . . . . 5  |-  ( n  =  m  ->  ( R ^r  ( n  +  1 ) )  =  ( R ^r  ( m  + 
1 ) ) )
9 oveq2 6316 . . . . . 6  |-  ( n  =  m  ->  ( R ^r  n )  =  ( R ^r  m ) )
109coeq2d 5002 . . . . 5  |-  ( n  =  m  ->  ( R  o.  ( R ^r  n ) )  =  ( R  o.  ( R ^r  m ) ) )
118, 10eqeq12d 2486 . . . 4  |-  ( n  =  m  ->  (
( R ^r 
( n  +  1 ) )  =  ( R  o.  ( R ^r  n ) )  <->  ( R ^r  ( m  + 
1 ) )  =  ( R  o.  ( R ^r  m ) ) ) )
1211imbi2d 323 . . 3  |-  ( n  =  m  ->  (
( R  e.  V  ->  ( R ^r 
( n  +  1 ) )  =  ( R  o.  ( R ^r  n ) ) )  <->  ( R  e.  V  ->  ( R ^r  ( m  +  1 ) )  =  ( R  o.  ( R ^r 
m ) ) ) ) )
13 oveq1 6315 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  (
n  +  1 )  =  ( ( m  +  1 )  +  1 ) )
1413oveq2d 6324 . . . . 5  |-  ( n  =  ( m  + 
1 )  ->  ( R ^r  ( n  +  1 ) )  =  ( R ^r  ( ( m  +  1 )  +  1 ) ) )
15 oveq2 6316 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  ( R ^r  n )  =  ( R ^r  ( m  + 
1 ) ) )
1615coeq2d 5002 . . . . 5  |-  ( n  =  ( m  + 
1 )  ->  ( R  o.  ( R ^r  n ) )  =  ( R  o.  ( R ^r  ( m  + 
1 ) ) ) )
1714, 16eqeq12d 2486 . . . 4  |-  ( n  =  ( m  + 
1 )  ->  (
( R ^r 
( n  +  1 ) )  =  ( R  o.  ( R ^r  n ) )  <->  ( R ^r  ( ( m  +  1 )  +  1 ) )  =  ( R  o.  ( R ^r  ( m  +  1 ) ) ) ) )
1817imbi2d 323 . . 3  |-  ( n  =  ( m  + 
1 )  ->  (
( R  e.  V  ->  ( R ^r 
( n  +  1 ) )  =  ( R  o.  ( R ^r  n ) ) )  <->  ( R  e.  V  ->  ( R ^r  ( ( m  +  1 )  +  1 ) )  =  ( R  o.  ( R ^r 
( m  +  1 ) ) ) ) ) )
19 oveq1 6315 . . . . . 6  |-  ( n  =  N  ->  (
n  +  1 )  =  ( N  + 
1 ) )
2019oveq2d 6324 . . . . 5  |-  ( n  =  N  ->  ( R ^r  ( n  +  1 ) )  =  ( R ^r  ( N  + 
1 ) ) )
21 oveq2 6316 . . . . . 6  |-  ( n  =  N  ->  ( R ^r  n )  =  ( R ^r  N ) )
2221coeq2d 5002 . . . . 5  |-  ( n  =  N  ->  ( R  o.  ( R ^r  n ) )  =  ( R  o.  ( R ^r  N ) ) )
2320, 22eqeq12d 2486 . . . 4  |-  ( n  =  N  ->  (
( R ^r 
( n  +  1 ) )  =  ( R  o.  ( R ^r  n ) )  <->  ( R ^r  ( N  + 
1 ) )  =  ( R  o.  ( R ^r  N ) ) ) )
2423imbi2d 323 . . 3  |-  ( n  =  N  ->  (
( R  e.  V  ->  ( R ^r 
( n  +  1 ) )  =  ( R  o.  ( R ^r  n ) ) )  <->  ( R  e.  V  ->  ( R ^r  ( N  +  1 ) )  =  ( R  o.  ( R ^r  N ) ) ) ) )
25 relexp1g 13166 . . . . 5  |-  ( R  e.  V  ->  ( R ^r  1 )  =  R )
2625coeq1d 5001 . . . 4  |-  ( R  e.  V  ->  (
( R ^r 
1 )  o.  R
)  =  ( R  o.  R ) )
27 1nn 10642 . . . . 5  |-  1  e.  NN
28 relexpsucnnr 13165 . . . . 5  |-  ( ( R  e.  V  /\  1  e.  NN )  ->  ( R ^r 
( 1  +  1 ) )  =  ( ( R ^r 
1 )  o.  R
) )
2927, 28mpan2 685 . . . 4  |-  ( R  e.  V  ->  ( R ^r  ( 1  +  1 ) )  =  ( ( R ^r  1 )  o.  R ) )
3025coeq2d 5002 . . . 4  |-  ( R  e.  V  ->  ( R  o.  ( R ^r  1 ) )  =  ( R  o.  R ) )
3126, 29, 303eqtr4d 2515 . . 3  |-  ( R  e.  V  ->  ( R ^r  ( 1  +  1 ) )  =  ( R  o.  ( R ^r 
1 ) ) )
32 coeq1 4997 . . . . . . . . 9  |-  ( ( R ^r  ( m  +  1 ) )  =  ( R  o.  ( R ^r  m ) )  ->  ( ( R ^r  ( m  +  1 ) )  o.  R )  =  ( ( R  o.  ( R ^r 
m ) )  o.  R ) )
33 coass 5361 . . . . . . . . 9  |-  ( ( R  o.  ( R ^r  m ) )  o.  R )  =  ( R  o.  ( ( R ^r  m )  o.  R ) )
3432, 33syl6eq 2521 . . . . . . . 8  |-  ( ( R ^r  ( m  +  1 ) )  =  ( R  o.  ( R ^r  m ) )  ->  ( ( R ^r  ( m  +  1 ) )  o.  R )  =  ( R  o.  (
( R ^r 
m )  o.  R
) ) )
3534adantl 473 . . . . . . 7  |-  ( ( ( R  e.  V  /\  m  e.  NN )  /\  ( R ^r  ( m  + 
1 ) )  =  ( R  o.  ( R ^r  m ) ) )  ->  (
( R ^r 
( m  +  1 ) )  o.  R
)  =  ( R  o.  ( ( R ^r  m )  o.  R ) ) )
36 simpl 464 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  m  e.  NN )  /\  ( R ^r  ( m  + 
1 ) )  =  ( R  o.  ( R ^r  m ) ) )  ->  ( R  e.  V  /\  m  e.  NN )
)
37 peano2nn 10643 . . . . . . . . 9  |-  ( m  e.  NN  ->  (
m  +  1 )  e.  NN )
3837anim2i 579 . . . . . . . 8  |-  ( ( R  e.  V  /\  m  e.  NN )  ->  ( R  e.  V  /\  ( m  +  1 )  e.  NN ) )
39 relexpsucnnr 13165 . . . . . . . 8  |-  ( ( R  e.  V  /\  ( m  +  1
)  e.  NN )  ->  ( R ^r  ( ( m  +  1 )  +  1 ) )  =  ( ( R ^r  ( m  + 
1 ) )  o.  R ) )
4036, 38, 393syl 18 . . . . . . 7  |-  ( ( ( R  e.  V  /\  m  e.  NN )  /\  ( R ^r  ( m  + 
1 ) )  =  ( R  o.  ( R ^r  m ) ) )  ->  ( R ^r  ( ( m  +  1 )  +  1 ) )  =  ( ( R ^r  ( m  +  1 ) )  o.  R ) )
41 relexpsucnnr 13165 . . . . . . . . 9  |-  ( ( R  e.  V  /\  m  e.  NN )  ->  ( R ^r 
( m  +  1 ) )  =  ( ( R ^r 
m )  o.  R
) )
4241adantr 472 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  m  e.  NN )  /\  ( R ^r  ( m  + 
1 ) )  =  ( R  o.  ( R ^r  m ) ) )  ->  ( R ^r  ( m  +  1 ) )  =  ( ( R ^r  m )  o.  R ) )
4342coeq2d 5002 . . . . . . 7  |-  ( ( ( R  e.  V  /\  m  e.  NN )  /\  ( R ^r  ( m  + 
1 ) )  =  ( R  o.  ( R ^r  m ) ) )  ->  ( R  o.  ( R ^r  ( m  +  1 ) ) )  =  ( R  o.  ( ( R ^r  m )  o.  R ) ) )
4435, 40, 433eqtr4d 2515 . . . . . 6  |-  ( ( ( R  e.  V  /\  m  e.  NN )  /\  ( R ^r  ( m  + 
1 ) )  =  ( R  o.  ( R ^r  m ) ) )  ->  ( R ^r  ( ( m  +  1 )  +  1 ) )  =  ( R  o.  ( R ^r 
( m  +  1 ) ) ) )
4544ex 441 . . . . 5  |-  ( ( R  e.  V  /\  m  e.  NN )  ->  ( ( R ^r  ( m  + 
1 ) )  =  ( R  o.  ( R ^r  m ) )  ->  ( R ^r  ( ( m  +  1 )  +  1 ) )  =  ( R  o.  ( R ^r 
( m  +  1 ) ) ) ) )
4645expcom 442 . . . 4  |-  ( m  e.  NN  ->  ( R  e.  V  ->  ( ( R ^r 
( m  +  1 ) )  =  ( R  o.  ( R ^r  m ) )  ->  ( R ^r  ( ( m  +  1 )  +  1 ) )  =  ( R  o.  ( R ^r 
( m  +  1 ) ) ) ) ) )
4746a2d 28 . . 3  |-  ( m  e.  NN  ->  (
( R  e.  V  ->  ( R ^r 
( m  +  1 ) )  =  ( R  o.  ( R ^r  m ) ) )  ->  ( R  e.  V  ->  ( R ^r  ( ( m  +  1 )  +  1 ) )  =  ( R  o.  ( R ^r  ( m  + 
1 ) ) ) ) ) )
486, 12, 18, 24, 31, 47nnind 10649 . 2  |-  ( N  e.  NN  ->  ( R  e.  V  ->  ( R ^r  ( N  +  1 ) )  =  ( R  o.  ( R ^r  N ) ) ) )
4948impcom 437 1  |-  ( ( R  e.  V  /\  N  e.  NN )  ->  ( R ^r 
( N  +  1 ) )  =  ( R  o.  ( R ^r  N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904    o. ccom 4843  (class class class)co 6308   1c1 9558    + caddc 9560   NNcn 10631   ^r crelexp 13160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-n0 10894  df-z 10962  df-uz 11183  df-seq 12252  df-relexp 13161
This theorem is referenced by:  relexpsucl  13173  relexpcnv  13175  relexpaddnn  13191  trclfvcom  36386  trclimalb2  36389
  Copyright terms: Public domain W3C validator