Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  releq Structured version   Visualization version   Unicode version

Theorem releq 4917
 Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
releq

Proof of Theorem releq
StepHypRef Expression
1 sseq1 3453 . 2
2 df-rel 4841 . 2
3 df-rel 4841 . 2
41, 2, 33bitr4g 292 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 188   wceq 1444  cvv 3045   wss 3404   cxp 4832   wrel 4839 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431 This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-clab 2438  df-cleq 2444  df-clel 2447  df-in 3411  df-ss 3418  df-rel 4841 This theorem is referenced by:  releqi  4918  releqd  4919  dfrel2  5286  tposfn2  6995  ereq1  7370  isps  16448  isdir  16478  fpwrelmapffslem  28317  bnj1321  29836  frrlem6  30523  prtlem12  32439  relintabex  36187  clrellem  36229  clcnvlem  36230
 Copyright terms: Public domain W3C validator