MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rele Structured version   Unicode version

Theorem rele 5137
Description: The membership relation is a relation. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
Assertion
Ref Expression
rele  |-  Rel  _E

Proof of Theorem rele
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-eprel 4797 . 2  |-  _E  =  { <. x ,  y
>.  |  x  e.  y }
21relopabi 5134 1  |-  Rel  _E
Colors of variables: wff setvar class
Syntax hints:    _E cep 4795   Rel wrel 5010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-opab 4512  df-eprel 4797  df-xp 5011  df-rel 5012
This theorem is referenced by:  cnambfre  29990
  Copyright terms: Public domain W3C validator