Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmlmhm Structured version   Unicode version

Theorem reldmlmhm 17889
 Description: Lemma for module homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
reldmlmhm LMHom

Proof of Theorem reldmlmhm
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lmhm 17886 . 2 LMHom Scalar Scalar
21reldmmpt2 6412 1 LMHom
 Colors of variables: wff setvar class Syntax hints:   wa 369   wceq 1395  wral 2807  crab 2811  wsbc 3327   cdm 5008   wrel 5013  cfv 5594  (class class class)co 6296  cbs 14735  Scalarcsca 14806  cvsca 14807   cghm 16482  clmod 17730   LMHom clmhm 17883 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-br 4457  df-opab 4516  df-xp 5014  df-rel 5015  df-dm 5018  df-oprab 6300  df-mpt2 6301  df-lmhm 17886 This theorem is referenced by:  mendbas  31380
 Copyright terms: Public domain W3C validator