Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmevls1 Structured version   Unicode version

Theorem reldmevls1 18228
 Description: Well-behaved binary operation property of evalSub1. (Contributed by AV, 7-Sep-2019.)
Assertion
Ref Expression
reldmevls1 evalSub1

Proof of Theorem reldmevls1
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-evls1 18226 . 2 evalSub1 evalSub
21reldmmpt2 6398 1 evalSub1
 Colors of variables: wff setvar class Syntax hints:  cvv 3095  csb 3420  cpw 3997  csn 4014   cmpt 4495   cxp 4987   cdm 4989   ccom 4993   wrel 4994  cfv 5578  (class class class)co 6281  c1o 7125   cmap 7422  cbs 14509   evalSub ces 18043   evalSub1 ces1 18224 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-br 4438  df-opab 4496  df-xp 4995  df-rel 4996  df-dm 4999  df-oprab 6285  df-mpt2 6286  df-evls1 18226 This theorem is referenced by:  evl1fval1  18241
 Copyright terms: Public domain W3C validator