MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldm0 Structured version   Visualization version   Unicode version

Theorem reldm0 5055
Description: A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
reldm0  |-  ( Rel 
A  ->  ( A  =  (/)  <->  dom  A  =  (/) ) )

Proof of Theorem reldm0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rel0 4961 . . 3  |-  Rel  (/)
2 eqrel 4927 . . 3  |-  ( ( Rel  A  /\  Rel  (/) )  ->  ( A  =  (/)  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  (/) ) ) )
31, 2mpan2 678 . 2  |-  ( Rel 
A  ->  ( A  =  (/)  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  (/) ) ) )
4 eq0 3749 . . 3  |-  ( dom 
A  =  (/)  <->  A. x  -.  x  e.  dom  A )
5 alnex 1667 . . . . . 6  |-  ( A. y  -.  <. x ,  y
>.  e.  A  <->  -.  E. y <. x ,  y >.  e.  A )
6 vex 3050 . . . . . . 7  |-  x  e. 
_V
76eldm2 5036 . . . . . 6  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
85, 7xchbinxr 313 . . . . 5  |-  ( A. y  -.  <. x ,  y
>.  e.  A  <->  -.  x  e.  dom  A )
9 noel 3737 . . . . . . 7  |-  -.  <. x ,  y >.  e.  (/)
109nbn 349 . . . . . 6  |-  ( -. 
<. x ,  y >.  e.  A  <->  ( <. x ,  y >.  e.  A  <->  <.
x ,  y >.  e.  (/) ) )
1110albii 1693 . . . . 5  |-  ( A. y  -.  <. x ,  y
>.  e.  A  <->  A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  (/) ) )
128, 11bitr3i 255 . . . 4  |-  ( -.  x  e.  dom  A  <->  A. y ( <. x ,  y >.  e.  A  <->  <.
x ,  y >.  e.  (/) ) )
1312albii 1693 . . 3  |-  ( A. x  -.  x  e.  dom  A  <->  A. x A. y (
<. x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  (/) ) )
144, 13bitr2i 254 . 2  |-  ( A. x A. y ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  (/) )  <->  dom  A  =  (/) )
153, 14syl6bb 265 1  |-  ( Rel 
A  ->  ( A  =  (/)  <->  dom  A  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188   A.wal 1444    = wceq 1446   E.wex 1665    e. wcel 1889   (/)c0 3733   <.cop 3976   dom cdm 4837   Rel wrel 4842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-sep 4528  ax-nul 4537  ax-pr 4642
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-rab 2748  df-v 3049  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3734  df-if 3884  df-sn 3971  df-pr 3973  df-op 3977  df-br 4406  df-opab 4465  df-xp 4843  df-rel 4844  df-dm 4847
This theorem is referenced by:  relrn0  5095  coeq0  5347  fnresdisj  5691  fn0  5700  fresaunres2  5760  fsnunfv  6109  frxp  6911  domss2  7736  swrd0  12797  setsres  15163  pmtrsn  17172  gsumval3  17553  00lsp  18216  metn0  21387  wlkn0  25267  usgravd00  25659  eupath  25721  dfrdg2  30454  mbfresfi  31999  mapfzcons1  35571  diophrw  35613  eldioph2lem1  35614  eldioph2lem2  35615  sge0cl  38233  funopsn  39028  1wlkn0  39644
  Copyright terms: Public domain W3C validator