MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldisj Structured version   Unicode version

Theorem reldisj 3875
Description: Two ways of saying that two classes are disjoint, using the complement of  B relative to a universe  C. (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
reldisj  |-  ( A 
C_  C  ->  (
( A  i^i  B
)  =  (/)  <->  A  C_  ( C  \  B ) ) )

Proof of Theorem reldisj
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dfss2 3498 . . . 4  |-  ( A 
C_  C  <->  A. x
( x  e.  A  ->  x  e.  C ) )
2 pm5.44 909 . . . . . 6  |-  ( ( x  e.  A  ->  x  e.  C )  ->  ( ( x  e.  A  ->  -.  x  e.  B )  <->  ( x  e.  A  ->  ( x  e.  C  /\  -.  x  e.  B )
) ) )
3 eldif 3491 . . . . . . 7  |-  ( x  e.  ( C  \  B )  <->  ( x  e.  C  /\  -.  x  e.  B ) )
43imbi2i 312 . . . . . 6  |-  ( ( x  e.  A  ->  x  e.  ( C  \  B ) )  <->  ( x  e.  A  ->  ( x  e.  C  /\  -.  x  e.  B )
) )
52, 4syl6bbr 263 . . . . 5  |-  ( ( x  e.  A  ->  x  e.  C )  ->  ( ( x  e.  A  ->  -.  x  e.  B )  <->  ( x  e.  A  ->  x  e.  ( C  \  B
) ) ) )
65sps 1814 . . . 4  |-  ( A. x ( x  e.  A  ->  x  e.  C )  ->  (
( x  e.  A  ->  -.  x  e.  B
)  <->  ( x  e.  A  ->  x  e.  ( C  \  B ) ) ) )
71, 6sylbi 195 . . 3  |-  ( A 
C_  C  ->  (
( x  e.  A  ->  -.  x  e.  B
)  <->  ( x  e.  A  ->  x  e.  ( C  \  B ) ) ) )
87albidv 1689 . 2  |-  ( A 
C_  C  ->  ( A. x ( x  e.  A  ->  -.  x  e.  B )  <->  A. x
( x  e.  A  ->  x  e.  ( C 
\  B ) ) ) )
9 disj1 3874 . 2  |-  ( ( A  i^i  B )  =  (/)  <->  A. x ( x  e.  A  ->  -.  x  e.  B )
)
10 dfss2 3498 . 2  |-  ( A 
C_  ( C  \  B )  <->  A. x
( x  e.  A  ->  x  e.  ( C 
\  B ) ) )
118, 9, 103bitr4g 288 1  |-  ( A 
C_  C  ->  (
( A  i^i  B
)  =  (/)  <->  A  C_  ( C  \  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1377    = wceq 1379    e. wcel 1767    \ cdif 3478    i^i cin 3480    C_ wss 3481   (/)c0 3790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2822  df-v 3120  df-dif 3484  df-in 3488  df-ss 3495  df-nul 3791
This theorem is referenced by:  disj2  3879  oacomf1olem  7225  domdifsn  7612  elfiun  7902  cantnfp1lem3  8111  cantnfp1lem3OLD  8137  ssxr  9666  structcnvcnv  14517  fidomndrng  17824  elcls  19440  ist1-2  19714  nrmsep2  19723  nrmsep  19724  isnrm3  19726  isreg2  19744  hauscmplem  19772  connsub  19788  iunconlem  19794  llycmpkgen2  19917  hausdiag  20012  trfil3  20255  isufil2  20275  filufint  20287  blcld  20874  i1fima2  21952  i1fd  21954  usgrares1  24242  nbgrassvwo  24269  nbgrassvwo2  24270  itg2addnclem2  30001
  Copyright terms: Public domain W3C validator