MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relcoi1OLD Structured version   Visualization version   Unicode version

Theorem relcoi1OLD 5365
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 8-May-2011.) Obsolete version of relcoi1 5364 as of 3-Jul-2020. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
relcoi1OLD  |-  ( Rel 
R  ->  ( R  o.  (  _I  |`  U. U. R ) )  =  R )

Proof of Theorem relcoi1OLD
StepHypRef Expression
1 relfld 5361 . . 3  |-  ( Rel 
R  ->  U. U. R  =  ( dom  R  u.  ran  R ) )
2 resundi 5118 . . . . 5  |-  (  _I  |`  ( dom  R  u.  ran  R ) )  =  ( (  _I  |`  dom  R
)  u.  (  _I  |`  ran  R ) )
3 coeq2 4993 . . . . 5  |-  ( (  _I  |`  ( dom  R  u.  ran  R ) )  =  ( (  _I  |`  dom  R )  u.  (  _I  |`  ran  R
) )  ->  ( R  o.  (  _I  |`  ( dom  R  u.  ran  R ) ) )  =  ( R  o.  ( (  _I  |`  dom  R
)  u.  (  _I  |`  ran  R ) ) ) )
4 coundi 5336 . . . . . . 7  |-  ( R  o.  ( (  _I  |`  dom  R )  u.  (  _I  |`  ran  R
) ) )  =  ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )
5 resco 5339 . . . . . . . 8  |-  ( ( R  o.  _I  )  |` 
dom  R )  =  ( R  o.  (  _I  |`  dom  R ) )
6 coi1 5351 . . . . . . . . 9  |-  ( Rel 
R  ->  ( R  o.  _I  )  =  R )
7 reseq1 5099 . . . . . . . . . 10  |-  ( ( R  o.  _I  )  =  R  ->  ( ( R  o.  _I  )  |` 
dom  R )  =  ( R  |`  dom  R
) )
8 resdm 5146 . . . . . . . . . . 11  |-  ( Rel 
R  ->  ( R  |` 
dom  R )  =  R )
9 eqtr 2470 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  o.  _I  )  |`  dom  R
)  =  ( R  |`  dom  R )  /\  ( R  |`  dom  R
)  =  R )  ->  ( ( R  o.  _I  )  |`  dom  R )  =  R )
10 eqtr 2470 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  o.  (  _I  |`  dom  R ) )  =  ( ( R  o.  _I  )  |` 
dom  R )  /\  ( ( R  o.  _I  )  |`  dom  R
)  =  R )  ->  ( R  o.  (  _I  |`  dom  R
) )  =  R )
11 resco 5339 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  o.  _I  )  |` 
ran  R )  =  ( R  o.  (  _I  |`  ran  R ) )
12 uneq1 3581 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  o.  (  _I  |`  dom  R ) )  =  R  ->  (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  u.  ( R  o.  (  _I  |` 
ran  R ) ) ) )
13 reseq1 5099 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  o.  _I  )  =  R  ->  ( ( R  o.  _I  )  |` 
ran  R )  =  ( R  |`  ran  R
) )
14 eqtr 2470 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( R  o.  (  _I  |`  ran  R ) )  =  ( ( R  o.  _I  )  |` 
ran  R )  /\  ( ( R  o.  _I  )  |`  ran  R
)  =  ( R  |`  ran  R ) )  ->  ( R  o.  (  _I  |`  ran  R
) )  =  ( R  |`  ran  R ) )
1514uneq2d 3588 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( R  o.  (  _I  |`  ran  R ) )  =  ( ( R  o.  _I  )  |` 
ran  R )  /\  ( ( R  o.  _I  )  |`  ran  R
)  =  ( R  |`  ran  R ) )  ->  ( R  u.  ( R  o.  (  _I  |`  ran  R ) ) )  =  ( R  u.  ( R  |`  ran  R ) ) )
16 eqtr 2470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  /\  ( R  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  |`  ran  R ) ) )  ->  ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  |`  ran  R ) ) )
17 resss 5128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( R  |`  ran  R )  C_  R
18 ssequn2 3607 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( R  |`  ran  R ) 
C_  R  <->  ( R  u.  ( R  |`  ran  R
) )  =  R )
1917, 18mpbi 212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( R  u.  ( R  |`  ran  R ) )  =  R
206, 19syl6reqr 2504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( Rel 
R  ->  ( R  u.  ( R  |`  ran  R
) )  =  ( R  o.  _I  )
)
21 eqeq1 2455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  u.  ( R  |`  ran  R ) )  ->  ( (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) 
<->  ( R  u.  ( R  |`  ran  R ) )  =  ( R  o.  _I  ) ) )
2220, 21syl5ibr 225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  u.  ( R  |`  ran  R ) )  ->  ( Rel  R  ->  ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) )
2316, 22syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  /\  ( R  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  |`  ran  R ) ) )  ->  ( Rel  R  ->  ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) )
2423ex 436 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  ->  ( ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  u.  ( R  |`  ran  R ) )  ->  ( Rel  R  ->  ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) )
2524com3l 84 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  u.  ( R  |`  ran  R ) )  ->  ( Rel  R  ->  ( ( ( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  ->  ( ( R  o.  (  _I  |` 
dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) )
2615, 25syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( R  o.  (  _I  |`  ran  R ) )  =  ( ( R  o.  _I  )  |` 
ran  R )  /\  ( ( R  o.  _I  )  |`  ran  R
)  =  ( R  |`  ran  R ) )  ->  ( Rel  R  ->  ( ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  -> 
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) )
2726ex 436 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( R  o.  (  _I  |`  ran  R ) )  =  ( ( R  o.  _I  )  |`  ran  R )  ->  (
( ( R  o.  _I  )  |`  ran  R
)  =  ( R  |`  ran  R )  -> 
( Rel  R  ->  ( ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  -> 
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) ) )
2827eqcoms 2459 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( R  o.  _I  )  |`  ran  R )  =  ( R  o.  (  _I  |`  ran  R
) )  ->  (
( ( R  o.  _I  )  |`  ran  R
)  =  ( R  |`  ran  R )  -> 
( Rel  R  ->  ( ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  -> 
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) ) )
2928com3l 84 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  o.  _I  )  |`  ran  R )  =  ( R  |`  ran  R )  ->  ( Rel  R  ->  ( (
( R  o.  _I  )  |`  ran  R )  =  ( R  o.  (  _I  |`  ran  R
) )  ->  (
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  -> 
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) ) )
3013, 29syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  o.  _I  )  =  R  ->  ( Rel 
R  ->  ( (
( R  o.  _I  )  |`  ran  R )  =  ( R  o.  (  _I  |`  ran  R
) )  ->  (
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  -> 
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) ) )
316, 30mpcom 37 . . . . . . . . . . . . . . . . . . . 20  |-  ( Rel 
R  ->  ( (
( R  o.  _I  )  |`  ran  R )  =  ( R  o.  (  _I  |`  ran  R
) )  ->  (
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  -> 
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) )
3231com3l 84 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  o.  _I  )  |`  ran  R )  =  ( R  o.  (  _I  |`  ran  R
) )  ->  (
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  -> 
( Rel  R  ->  ( ( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) )
3311, 12, 32mpsyl 65 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  o.  (  _I  |`  dom  R ) )  =  R  ->  ( Rel  R  ->  ( ( R  o.  (  _I  |` 
dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) )
3410, 33syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  o.  (  _I  |`  dom  R ) )  =  ( ( R  o.  _I  )  |` 
dom  R )  /\  ( ( R  o.  _I  )  |`  dom  R
)  =  R )  ->  ( Rel  R  ->  ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) )
3534ex 436 . . . . . . . . . . . . . . . 16  |-  ( ( R  o.  (  _I  |`  dom  R ) )  =  ( ( R  o.  _I  )  |`  dom  R )  ->  (
( ( R  o.  _I  )  |`  dom  R
)  =  R  -> 
( Rel  R  ->  ( ( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) )
3635eqcoms 2459 . . . . . . . . . . . . . . 15  |-  ( ( ( R  o.  _I  )  |`  dom  R )  =  ( R  o.  (  _I  |`  dom  R
) )  ->  (
( ( R  o.  _I  )  |`  dom  R
)  =  R  -> 
( Rel  R  ->  ( ( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) )
3736com3l 84 . . . . . . . . . . . . . 14  |-  ( ( ( R  o.  _I  )  |`  dom  R )  =  R  ->  ( Rel  R  ->  ( (
( R  o.  _I  )  |`  dom  R )  =  ( R  o.  (  _I  |`  dom  R
) )  ->  (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) )
389, 37syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( R  o.  _I  )  |`  dom  R
)  =  ( R  |`  dom  R )  /\  ( R  |`  dom  R
)  =  R )  ->  ( Rel  R  ->  ( ( ( R  o.  _I  )  |`  dom  R )  =  ( R  o.  (  _I  |`  dom  R ) )  ->  ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) )
3938ex 436 . . . . . . . . . . . 12  |-  ( ( ( R  o.  _I  )  |`  dom  R )  =  ( R  |`  dom  R )  ->  (
( R  |`  dom  R
)  =  R  -> 
( Rel  R  ->  ( ( ( R  o.  _I  )  |`  dom  R
)  =  ( R  o.  (  _I  |`  dom  R
) )  ->  (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) ) )
4039com3l 84 . . . . . . . . . . 11  |-  ( ( R  |`  dom  R )  =  R  ->  ( Rel  R  ->  ( (
( R  o.  _I  )  |`  dom  R )  =  ( R  |`  dom  R )  ->  (
( ( R  o.  _I  )  |`  dom  R
)  =  ( R  o.  (  _I  |`  dom  R
) )  ->  (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) ) )
418, 40mpcom 37 . . . . . . . . . 10  |-  ( Rel 
R  ->  ( (
( R  o.  _I  )  |`  dom  R )  =  ( R  |`  dom  R )  ->  (
( ( R  o.  _I  )  |`  dom  R
)  =  ( R  o.  (  _I  |`  dom  R
) )  ->  (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) )
427, 41syl5com 31 . . . . . . . . 9  |-  ( ( R  o.  _I  )  =  R  ->  ( Rel 
R  ->  ( (
( R  o.  _I  )  |`  dom  R )  =  ( R  o.  (  _I  |`  dom  R
) )  ->  (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) )
436, 42mpcom 37 . . . . . . . 8  |-  ( Rel 
R  ->  ( (
( R  o.  _I  )  |`  dom  R )  =  ( R  o.  (  _I  |`  dom  R
) )  ->  (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) )
445, 43mpi 20 . . . . . . 7  |-  ( Rel 
R  ->  ( ( R  o.  (  _I  |` 
dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) )
454, 44syl5eq 2497 . . . . . 6  |-  ( Rel 
R  ->  ( R  o.  ( (  _I  |`  dom  R
)  u.  (  _I  |`  ran  R ) ) )  =  ( R  o.  _I  ) )
46 eqeq1 2455 . . . . . 6  |-  ( ( R  o.  (  _I  |`  ( dom  R  u.  ran  R ) ) )  =  ( R  o.  ( (  _I  |`  dom  R
)  u.  (  _I  |`  ran  R ) ) )  ->  ( ( R  o.  (  _I  |`  ( dom  R  u.  ran  R ) ) )  =  ( R  o.  _I  )  <->  ( R  o.  ( (  _I  |`  dom  R
)  u.  (  _I  |`  ran  R ) ) )  =  ( R  o.  _I  ) ) )
4745, 46syl5ibr 225 . . . . 5  |-  ( ( R  o.  (  _I  |`  ( dom  R  u.  ran  R ) ) )  =  ( R  o.  ( (  _I  |`  dom  R
)  u.  (  _I  |`  ran  R ) ) )  ->  ( Rel  R  ->  ( R  o.  (  _I  |`  ( dom 
R  u.  ran  R
) ) )  =  ( R  o.  _I  ) ) )
482, 3, 47mp2b 10 . . . 4  |-  ( Rel 
R  ->  ( R  o.  (  _I  |`  ( dom  R  u.  ran  R
) ) )  =  ( R  o.  _I  ) )
49 reseq2 5100 . . . . . 6  |-  ( U. U. R  =  ( dom 
R  u.  ran  R
)  ->  (  _I  |` 
U. U. R )  =  (  _I  |`  ( dom  R  u.  ran  R
) ) )
5049coeq2d 4997 . . . . 5  |-  ( U. U. R  =  ( dom 
R  u.  ran  R
)  ->  ( R  o.  (  _I  |`  U. U. R ) )  =  ( R  o.  (  _I  |`  ( dom  R  u.  ran  R ) ) ) )
5150eqeq1d 2453 . . . 4  |-  ( U. U. R  =  ( dom 
R  u.  ran  R
)  ->  ( ( R  o.  (  _I  |` 
U. U. R ) )  =  ( R  o.  _I  )  <->  ( R  o.  (  _I  |`  ( dom 
R  u.  ran  R
) ) )  =  ( R  o.  _I  ) ) )
5248, 51syl5ibr 225 . . 3  |-  ( U. U. R  =  ( dom 
R  u.  ran  R
)  ->  ( Rel  R  ->  ( R  o.  (  _I  |`  U. U. R ) )  =  ( R  o.  _I  ) ) )
531, 52mpcom 37 . 2  |-  ( Rel 
R  ->  ( R  o.  (  _I  |`  U. U. R ) )  =  ( R  o.  _I  ) )
5453, 6eqtrd 2485 1  |-  ( Rel 
R  ->  ( R  o.  (  _I  |`  U. U. R ) )  =  R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1444    u. cun 3402    C_ wss 3404   U.cuni 4198    _I cid 4744   dom cdm 4834   ran crn 4835    |` cres 4836    o. ccom 4838   Rel wrel 4839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pr 4639
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-br 4403  df-opab 4462  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator