Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relae Structured version   Unicode version

Theorem relae 28452
Description: 'almost everywhere' is a relation. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Assertion
Ref Expression
relae  |-  Rel a.e.

Proof of Theorem relae
Dummy variables  m  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ae 28451 . 2  |- a.e.  =  { <. a ,  m >.  |  ( m `  ( U. dom  m  \  a
) )  =  0 }
21relopabi 5116 1  |-  Rel a.e.
Colors of variables: wff setvar class
Syntax hints:    = wceq 1398    \ cdif 3458   U.cuni 4235   dom cdm 4988   Rel wrel 4993   ` cfv 5570   0cc0 9481  a.e.cae 28449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-opab 4498  df-xp 4994  df-rel 4995  df-ae 28451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator