Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reheibor Structured version   Unicode version

Theorem reheibor 28736
Description: Heine-Borel theorem for real numbers. A subset of  RR is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
reheibor.2  |-  M  =  ( ( abs  o.  -  )  |`  ( Y  X.  Y ) )
reheibor.3  |-  T  =  ( MetOpen `  M )
reheibor.4  |-  U  =  ( topGen `  ran  (,) )
Assertion
Ref Expression
reheibor  |-  ( Y 
C_  RR  ->  ( T  e.  Comp  <->  ( Y  e.  ( Clsd `  U
)  /\  M  e.  ( Bnd `  Y ) ) ) )

Proof of Theorem reheibor
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df1o2 6931 . . . 4  |-  1o  =  { (/) }
2 snfi 7389 . . . 4  |-  { (/) }  e.  Fin
31, 2eqeltri 2512 . . 3  |-  1o  e.  Fin
4 imassrn 5179 . . . . 5  |-  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  C_  ran  ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
5 0ex 4421 . . . . . . . . . 10  |-  (/)  e.  _V
6 eqid 2442 . . . . . . . . . . 11  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
7 eqid 2442 . . . . . . . . . . 11  |-  ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) )  =  ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
86, 7ismrer1 28735 . . . . . . . . . 10  |-  ( (/)  e.  _V  ->  ( x  e.  RR  |->  ( { (/) }  X.  { x }
) )  e.  ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) 
Ismty  ( Rn `  { (/)
} ) ) )
95, 8ax-mp 5 . . . . . . . . 9  |-  ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) )  e.  ( ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) 
Ismty  ( Rn `  { (/)
} ) )
101fveq2i 5693 . . . . . . . . . 10  |-  ( Rn
`  1o )  =  ( Rn `  { (/)
} )
1110oveq2i 6101 . . . . . . . . 9  |-  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  Ismty  ( Rn
`  1o ) )  =  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  Ismty  ( Rn
`  { (/) } ) )
129, 11eleqtrri 2515 . . . . . . . 8  |-  ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) )  e.  ( ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) 
Ismty  ( Rn `  1o ) )
136rexmet 20367 . . . . . . . . 9  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR )
14 eqid 2442 . . . . . . . . . . 11  |-  ( RR 
^m  1o )  =  ( RR  ^m  1o )
1514rrnmet 28726 . . . . . . . . . 10  |-  ( 1o  e.  Fin  ->  ( Rn `  1o )  e.  ( Met `  ( RR  ^m  1o ) ) )
16 metxmet 19908 . . . . . . . . . 10  |-  ( ( Rn `  1o )  e.  ( Met `  ( RR  ^m  1o ) )  ->  ( Rn `  1o )  e.  ( *Met `  ( RR 
^m  1o ) ) )
173, 15, 16mp2b 10 . . . . . . . . 9  |-  ( Rn
`  1o )  e.  ( *Met `  ( RR  ^m  1o ) )
18 isismty 28698 . . . . . . . . 9  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( *Met `  RR )  /\  ( Rn `  1o )  e.  ( *Met `  ( RR  ^m  1o ) ) )  ->  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )  e.  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  Ismty  ( Rn
`  1o ) )  <-> 
( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) : RR -1-1-onto-> ( RR  ^m  1o )  /\  A. y  e.  RR  A. z  e.  RR  (
y ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) z )  =  ( ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) `  y
) ( Rn `  1o ) ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) `  z ) ) ) ) )
1913, 17, 18mp2an 672 . . . . . . . 8  |-  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )  e.  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  Ismty  ( Rn
`  1o ) )  <-> 
( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) : RR -1-1-onto-> ( RR  ^m  1o )  /\  A. y  e.  RR  A. z  e.  RR  (
y ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) z )  =  ( ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) `  y
) ( Rn `  1o ) ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) `  z ) ) ) )
2012, 19mpbi 208 . . . . . . 7  |-  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) ) : RR -1-1-onto-> ( RR  ^m  1o )  /\  A. y  e.  RR  A. z  e.  RR  ( y ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) z )  =  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) ) `
 y ) ( Rn `  1o ) ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) `  z
) ) )
2120simpli 458 . . . . . 6  |-  ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) : RR -1-1-onto-> ( RR  ^m  1o )
22 f1of 5640 . . . . . 6  |-  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) ) : RR -1-1-onto-> ( RR  ^m  1o )  ->  ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) : RR --> ( RR  ^m  1o ) )
23 frn 5564 . . . . . 6  |-  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) ) : RR --> ( RR 
^m  1o )  ->  ran  ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) ) 
C_  ( RR  ^m  1o ) )
2421, 22, 23mp2b 10 . . . . 5  |-  ran  (
x  e.  RR  |->  ( { (/) }  X.  {
x } ) ) 
C_  ( RR  ^m  1o )
254, 24sstri 3364 . . . 4  |-  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  C_  ( RR  ^m  1o )
2625a1i 11 . . 3  |-  ( Y 
C_  RR  ->  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  C_  ( RR  ^m  1o ) )
27 eqid 2442 . . . 4  |-  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) )  =  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) )
28 eqid 2442 . . . 4  |-  ( MetOpen `  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )  =  ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )
29 eqid 2442 . . . 4  |-  ( MetOpen `  ( Rn `  1o ) )  =  ( MetOpen `  ( Rn `  1o ) )
3014, 27, 28, 29rrnheibor 28734 . . 3  |-  ( ( 1o  e.  Fin  /\  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
)  C_  ( RR  ^m  1o ) )  -> 
( ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )  e.  Comp  <->  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  e.  ( Clsd `  ( MetOpen
`  ( Rn `  1o ) ) )  /\  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) )  e.  ( Bnd `  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) ) )
313, 26, 30sylancr 663 . 2  |-  ( Y 
C_  RR  ->  ( (
MetOpen `  ( ( Rn
`  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) )  e.  Comp  <->  (
( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
)  e.  ( Clsd `  ( MetOpen `  ( Rn `  1o ) ) )  /\  ( ( Rn
`  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) )  e.  ( Bnd `  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) ) )
32 reheibor.2 . . . . . . 7  |-  M  =  ( ( abs  o.  -  )  |`  ( Y  X.  Y ) )
33 cnxmet 20351 . . . . . . . 8  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
34 id 22 . . . . . . . . 9  |-  ( Y 
C_  RR  ->  Y  C_  RR )
35 ax-resscn 9338 . . . . . . . . 9  |-  RR  C_  CC
3634, 35syl6ss 3367 . . . . . . . 8  |-  ( Y 
C_  RR  ->  Y  C_  CC )
37 xmetres2 19935 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  Y  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( Y  X.  Y ) )  e.  ( *Met `  Y ) )
3833, 36, 37sylancr 663 . . . . . . 7  |-  ( Y 
C_  RR  ->  ( ( abs  o.  -  )  |`  ( Y  X.  Y
) )  e.  ( *Met `  Y
) )
3932, 38syl5eqel 2526 . . . . . 6  |-  ( Y 
C_  RR  ->  M  e.  ( *Met `  Y ) )
40 xmetres2 19935 . . . . . . 7  |-  ( ( ( Rn `  1o )  e.  ( *Met `  ( RR  ^m  1o ) )  /\  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  C_  ( RR  ^m  1o ) )  ->  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) )  e.  ( *Met `  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) )
4117, 26, 40sylancr 663 . . . . . 6  |-  ( Y 
C_  RR  ->  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) )  e.  ( *Met `  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) )
42 reheibor.3 . . . . . . 7  |-  T  =  ( MetOpen `  M )
4342, 28ismtyhmeo 28702 . . . . . 6  |-  ( ( M  e.  ( *Met `  Y )  /\  ( ( Rn
`  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) )  e.  ( *Met `  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) )  ->  ( M  Ismty  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) ) 
C_  ( T Homeo (
MetOpen `  ( ( Rn
`  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) ) ) )
4439, 41, 43syl2anc 661 . . . . 5  |-  ( Y 
C_  RR  ->  ( M 
Ismty  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) ) 
C_  ( T Homeo (
MetOpen `  ( ( Rn
`  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) ) ) )
4513a1i 11 . . . . . . 7  |-  ( Y 
C_  RR  ->  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR ) )
4617a1i 11 . . . . . . 7  |-  ( Y 
C_  RR  ->  ( Rn
`  1o )  e.  ( *Met `  ( RR  ^m  1o ) ) )
4712a1i 11 . . . . . . 7  |-  ( Y 
C_  RR  ->  ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) )  e.  ( ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) 
Ismty  ( Rn `  1o ) ) )
48 eqid 2442 . . . . . . . 8  |-  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  =  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
)
49 eqid 2442 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  |`  ( Y  X.  Y ) )  =  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  |`  ( Y  X.  Y ) )
5048, 49, 27ismtyres 28705 . . . . . . 7  |-  ( ( ( ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR )  /\  ( Rn `  1o )  e.  ( *Met `  ( RR  ^m  1o ) ) )  /\  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )  e.  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  Ismty  ( Rn
`  1o ) )  /\  Y  C_  RR ) )  ->  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )  |`  Y )  e.  ( ( ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) )  |`  ( Y  X.  Y
) )  Ismty  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) ) )
5145, 46, 47, 34, 50syl22anc 1219 . . . . . 6  |-  ( Y 
C_  RR  ->  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )  |`  Y )  e.  ( ( ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) )  |`  ( Y  X.  Y
) )  Ismty  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) ) )
52 xpss12 4944 . . . . . . . . . 10  |-  ( ( Y  C_  RR  /\  Y  C_  RR )  ->  ( Y  X.  Y )  C_  ( RR  X.  RR ) )
5352anidms 645 . . . . . . . . 9  |-  ( Y 
C_  RR  ->  ( Y  X.  Y )  C_  ( RR  X.  RR ) )
54 resabs1 5138 . . . . . . . . 9  |-  ( ( Y  X.  Y ) 
C_  ( RR  X.  RR )  ->  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  |`  ( Y  X.  Y ) )  =  ( ( abs 
o.  -  )  |`  ( Y  X.  Y ) ) )
5553, 54syl 16 . . . . . . . 8  |-  ( Y 
C_  RR  ->  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  |`  ( Y  X.  Y ) )  =  ( ( abs 
o.  -  )  |`  ( Y  X.  Y ) ) )
5655, 32syl6eqr 2492 . . . . . . 7  |-  ( Y 
C_  RR  ->  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  |`  ( Y  X.  Y ) )  =  M )
5756oveq1d 6105 . . . . . 6  |-  ( Y 
C_  RR  ->  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  |`  ( Y  X.  Y
) )  Ismty  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) )  =  ( M  Ismty  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) ) )
5851, 57eleqtrd 2518 . . . . 5  |-  ( Y 
C_  RR  ->  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )  |`  Y )  e.  ( M  Ismty  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) ) )
5944, 58sseldd 3356 . . . 4  |-  ( Y 
C_  RR  ->  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )  |`  Y )  e.  ( T Homeo ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) ) ) )
60 hmphi 19349 . . . 4  |-  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )  |`  Y )  e.  ( T Homeo ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) ) )  ->  T  ~=  ( MetOpen `  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) ) )
6159, 60syl 16 . . 3  |-  ( Y 
C_  RR  ->  T  ~=  ( MetOpen `  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) ) )
62 cmphmph 19360 . . . 4  |-  ( T  ~=  ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )  ->  ( T  e. 
Comp  ->  ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )  e.  Comp ) )
63 hmphsym 19354 . . . . 5  |-  ( T  ~=  ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )  ->  ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )  ~=  T )
64 cmphmph 19360 . . . . 5  |-  ( (
MetOpen `  ( ( Rn
`  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) )  ~=  T  ->  ( ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )  e.  Comp  ->  T  e. 
Comp ) )
6563, 64syl 16 . . . 4  |-  ( T  ~=  ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )  ->  ( ( MetOpen `  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )  e.  Comp  ->  T  e. 
Comp ) )
6662, 65impbid 191 . . 3  |-  ( T  ~=  ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )  ->  ( T  e. 
Comp 
<->  ( MetOpen `  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) )  e.  Comp ) )
6761, 66syl 16 . 2  |-  ( Y 
C_  RR  ->  ( T  e.  Comp  <->  ( MetOpen `  (
( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )  e.  Comp ) )
68 reheibor.4 . . . . . . . 8  |-  U  =  ( topGen `  ran  (,) )
69 eqid 2442 . . . . . . . . 9  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )
706, 69tgioo 20372 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) )
7168, 70eqtri 2462 . . . . . . 7  |-  U  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) )
7271, 29ismtyhmeo 28702 . . . . . 6  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( *Met `  RR )  /\  ( Rn `  1o )  e.  ( *Met `  ( RR  ^m  1o ) ) )  ->  (
( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) 
Ismty  ( Rn `  1o ) )  C_  ( U Homeo ( MetOpen `  ( Rn `  1o ) ) ) )
7313, 17, 72mp2an 672 . . . . 5  |-  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  Ismty  ( Rn
`  1o ) ) 
C_  ( U Homeo (
MetOpen `  ( Rn `  1o ) ) )
7473, 12sselii 3352 . . . 4  |-  ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) )  e.  ( U Homeo ( MetOpen `  ( Rn `  1o ) ) )
75 retopon 20341 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
7668, 75eqeltri 2512 . . . . . 6  |-  U  e.  (TopOn `  RR )
7776toponunii 18536 . . . . 5  |-  RR  =  U. U
7877hmeocld 19339 . . . 4  |-  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )  e.  ( U Homeo (
MetOpen `  ( Rn `  1o ) ) )  /\  Y  C_  RR )  -> 
( Y  e.  (
Clsd `  U )  <->  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  e.  ( Clsd `  ( MetOpen
`  ( Rn `  1o ) ) ) ) )
7974, 34, 78sylancr 663 . . 3  |-  ( Y 
C_  RR  ->  ( Y  e.  ( Clsd `  U
)  <->  ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  e.  (
Clsd `  ( MetOpen `  ( Rn `  1o ) ) ) ) )
80 ismtybnd 28704 . . . 4  |-  ( ( M  e.  ( *Met `  Y )  /\  ( ( Rn
`  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) )  e.  ( *Met `  ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) )  /\  ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) )  |`  Y )  e.  ( M  Ismty  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) ) )  -> 
( M  e.  ( Bnd `  Y )  <-> 
( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) )  e.  ( Bnd `  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) )
8139, 41, 58, 80syl3anc 1218 . . 3  |-  ( Y 
C_  RR  ->  ( M  e.  ( Bnd `  Y
)  <->  ( ( Rn
`  1o )  |`  ( ( ( x  e.  RR  |->  ( {
(/) }  X.  { x } ) ) " Y )  X.  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) )  e.  ( Bnd `  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) ) )
8279, 81anbi12d 710 . 2  |-  ( Y 
C_  RR  ->  ( ( Y  e.  ( Clsd `  U )  /\  M  e.  ( Bnd `  Y
) )  <->  ( (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  e.  ( Clsd `  ( MetOpen
`  ( Rn `  1o ) ) )  /\  ( ( Rn `  1o )  |`  ( ( ( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y )  X.  ( ( x  e.  RR  |->  ( { (/) }  X.  { x }
) ) " Y
) ) )  e.  ( Bnd `  (
( x  e.  RR  |->  ( { (/) }  X.  {
x } ) )
" Y ) ) ) ) )
8331, 67, 823bitr4d 285 1  |-  ( Y 
C_  RR  ->  ( T  e.  Comp  <->  ( Y  e.  ( Clsd `  U
)  /\  M  e.  ( Bnd `  Y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2714   _Vcvv 2971    C_ wss 3327   (/)c0 3636   {csn 3876   class class class wbr 4291    e. cmpt 4349    X. cxp 4837   ran crn 4840    |` cres 4841   "cima 4842    o. ccom 4843   -->wf 5413   -1-1-onto->wf1o 5416   ` cfv 5417  (class class class)co 6090   1oc1o 6912    ^m cmap 7213   Fincfn 7309   CCcc 9279   RRcr 9280    - cmin 9594   (,)cioo 11299   abscabs 12722   topGenctg 14375   *Metcxmt 17800   Metcme 17801   MetOpencmopn 17805  TopOnctopon 18498   Clsdccld 18619   Compccmp 18988   Homeochmeo 19325    ~= chmph 19326   Bndcbnd 28664    Ismty cismty 28695   Rncrrn 28722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-inf2 7846  ax-cc 8603  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358  ax-pre-sup 9359  ax-addf 9360  ax-mulf 9361
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-int 4128  df-iun 4172  df-iin 4173  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-se 4679  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6831  df-rdg 6865  df-1o 6919  df-2o 6920  df-oadd 6923  df-omul 6924  df-er 7100  df-ec 7102  df-map 7215  df-pm 7216  df-ixp 7263  df-en 7310  df-dom 7311  df-sdom 7312  df-fin 7313  df-fi 7660  df-sup 7690  df-oi 7723  df-card 8108  df-acn 8111  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-div 9993  df-nn 10322  df-2 10379  df-3 10380  df-4 10381  df-5 10382  df-6 10383  df-7 10384  df-8 10385  df-9 10386  df-10 10387  df-n0 10579  df-z 10646  df-dec 10755  df-uz 10861  df-q 10953  df-rp 10991  df-xneg 11088  df-xadd 11089  df-xmul 11090  df-ioo 11303  df-ico 11305  df-icc 11306  df-fz 11437  df-fzo 11548  df-fl 11641  df-seq 11806  df-exp 11865  df-hash 12103  df-cj 12587  df-re 12588  df-im 12589  df-sqr 12723  df-abs 12724  df-limsup 12948  df-clim 12965  df-rlim 12966  df-sum 13163  df-gz 13990  df-struct 14175  df-ndx 14176  df-slot 14177  df-base 14178  df-sets 14179  df-ress 14180  df-plusg 14250  df-mulr 14251  df-starv 14252  df-sca 14253  df-vsca 14254  df-ip 14255  df-tset 14256  df-ple 14257  df-ds 14259  df-unif 14260  df-hom 14261  df-cco 14262  df-rest 14360  df-topn 14361  df-topgen 14381  df-prds 14385  df-pws 14387  df-psmet 17808  df-xmet 17809  df-met 17810  df-bl 17811  df-mopn 17812  df-fbas 17813  df-fg 17814  df-cnfld 17818  df-top 18502  df-bases 18504  df-topon 18505  df-topsp 18506  df-cld 18622  df-ntr 18623  df-cls 18624  df-nei 18701  df-cn 18830  df-lm 18832  df-haus 18918  df-cmp 18989  df-hmeo 19327  df-hmph 19328  df-fil 19418  df-fm 19510  df-flim 19511  df-flf 19512  df-xms 19894  df-ms 19895  df-cfil 20765  df-cau 20766  df-cmet 20767  df-totbnd 28665  df-bnd 28676  df-ismty 28696  df-rrn 28723
This theorem is referenced by:  icccmpALT  28738
  Copyright terms: Public domain W3C validator