MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regsep2 Structured version   Unicode version

Theorem regsep2 19855
Description: In a regular space, a closed set is separated by open sets from a point not in it. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
t1sep.1  |-  X  = 
U. J
Assertion
Ref Expression
regsep2  |-  ( ( J  e.  Reg  /\  ( C  e.  ( Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  ->  E. x  e.  J  E. y  e.  J  ( C  C_  x  /\  A  e.  y  /\  ( x  i^i  y )  =  (/) ) )
Distinct variable groups:    x, y, A    x, C, y    x, J, y    x, X, y

Proof of Theorem regsep2
StepHypRef Expression
1 regtop 19812 . . . . . . 7  |-  ( J  e.  Reg  ->  J  e.  Top )
21ad2antrr 725 . . . . . 6  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  J  e.  Top )
3 elssuni 4264 . . . . . . . 8  |-  ( y  e.  J  ->  y  C_ 
U. J )
4 t1sep.1 . . . . . . . 8  |-  X  = 
U. J
53, 4syl6sseqr 3536 . . . . . . 7  |-  ( y  e.  J  ->  y  C_  X )
65ad2antrl 727 . . . . . 6  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  y  C_  X
)
74clscld 19526 . . . . . 6  |-  ( ( J  e.  Top  /\  y  C_  X )  -> 
( ( cls `  J
) `  y )  e.  ( Clsd `  J
) )
82, 6, 7syl2anc 661 . . . . 5  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  ( ( cls `  J ) `  y
)  e.  ( Clsd `  J ) )
94cldopn 19510 . . . . 5  |-  ( ( ( cls `  J
) `  y )  e.  ( Clsd `  J
)  ->  ( X  \  ( ( cls `  J
) `  y )
)  e.  J )
108, 9syl 16 . . . 4  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  ( X  \ 
( ( cls `  J
) `  y )
)  e.  J )
11 simprrr 766 . . . . 5  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  ( ( cls `  J ) `  y
)  C_  ( X  \  C ) )
124clsss3 19538 . . . . . . 7  |-  ( ( J  e.  Top  /\  y  C_  X )  -> 
( ( cls `  J
) `  y )  C_  X )
132, 6, 12syl2anc 661 . . . . . 6  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  ( ( cls `  J ) `  y
)  C_  X )
14 simplr1 1039 . . . . . . 7  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  C  e.  (
Clsd `  J )
)
154cldss 19508 . . . . . . 7  |-  ( C  e.  ( Clsd `  J
)  ->  C  C_  X
)
1614, 15syl 16 . . . . . 6  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  C  C_  X
)
17 ssconb 3622 . . . . . 6  |-  ( ( ( ( cls `  J
) `  y )  C_  X  /\  C  C_  X )  ->  (
( ( cls `  J
) `  y )  C_  ( X  \  C
)  <->  C  C_  ( X 
\  ( ( cls `  J ) `  y
) ) ) )
1813, 16, 17syl2anc 661 . . . . 5  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  ( ( ( cls `  J ) `
 y )  C_  ( X  \  C )  <-> 
C  C_  ( X  \  ( ( cls `  J
) `  y )
) ) )
1911, 18mpbid 210 . . . 4  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  C  C_  ( X  \  ( ( cls `  J ) `  y
) ) )
20 simprrl 765 . . . 4  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  A  e.  y )
214sscls 19535 . . . . . . 7  |-  ( ( J  e.  Top  /\  y  C_  X )  -> 
y  C_  ( ( cls `  J ) `  y ) )
222, 6, 21syl2anc 661 . . . . . 6  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  y  C_  (
( cls `  J
) `  y )
)
23 sslin 3709 . . . . . 6  |-  ( y 
C_  ( ( cls `  J ) `  y
)  ->  ( ( X  \  ( ( cls `  J ) `  y
) )  i^i  y
)  C_  ( ( X  \  ( ( cls `  J ) `  y
) )  i^i  (
( cls `  J
) `  y )
) )
2422, 23syl 16 . . . . 5  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  ( ( X 
\  ( ( cls `  J ) `  y
) )  i^i  y
)  C_  ( ( X  \  ( ( cls `  J ) `  y
) )  i^i  (
( cls `  J
) `  y )
) )
25 incom 3676 . . . . . 6  |-  ( ( X  \  ( ( cls `  J ) `
 y ) )  i^i  ( ( cls `  J ) `  y
) )  =  ( ( ( cls `  J
) `  y )  i^i  ( X  \  (
( cls `  J
) `  y )
) )
26 disjdif 3886 . . . . . 6  |-  ( ( ( cls `  J
) `  y )  i^i  ( X  \  (
( cls `  J
) `  y )
) )  =  (/)
2725, 26eqtri 2472 . . . . 5  |-  ( ( X  \  ( ( cls `  J ) `
 y ) )  i^i  ( ( cls `  J ) `  y
) )  =  (/)
28 sseq0 3803 . . . . 5  |-  ( ( ( ( X  \ 
( ( cls `  J
) `  y )
)  i^i  y )  C_  ( ( X  \ 
( ( cls `  J
) `  y )
)  i^i  ( ( cls `  J ) `  y ) )  /\  ( ( X  \ 
( ( cls `  J
) `  y )
)  i^i  ( ( cls `  J ) `  y ) )  =  (/) )  ->  ( ( X  \  ( ( cls `  J ) `
 y ) )  i^i  y )  =  (/) )
2924, 27, 28sylancl 662 . . . 4  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  ( ( X 
\  ( ( cls `  J ) `  y
) )  i^i  y
)  =  (/) )
30 sseq2 3511 . . . . . 6  |-  ( x  =  ( X  \ 
( ( cls `  J
) `  y )
)  ->  ( C  C_  x  <->  C  C_  ( X 
\  ( ( cls `  J ) `  y
) ) ) )
31 ineq1 3678 . . . . . . 7  |-  ( x  =  ( X  \ 
( ( cls `  J
) `  y )
)  ->  ( x  i^i  y )  =  ( ( X  \  (
( cls `  J
) `  y )
)  i^i  y )
)
3231eqeq1d 2445 . . . . . 6  |-  ( x  =  ( X  \ 
( ( cls `  J
) `  y )
)  ->  ( (
x  i^i  y )  =  (/)  <->  ( ( X 
\  ( ( cls `  J ) `  y
) )  i^i  y
)  =  (/) ) )
3330, 323anbi13d 1302 . . . . 5  |-  ( x  =  ( X  \ 
( ( cls `  J
) `  y )
)  ->  ( ( C  C_  x  /\  A  e.  y  /\  (
x  i^i  y )  =  (/) )  <->  ( C  C_  ( X  \  (
( cls `  J
) `  y )
)  /\  A  e.  y  /\  ( ( X 
\  ( ( cls `  J ) `  y
) )  i^i  y
)  =  (/) ) ) )
3433rspcev 3196 . . . 4  |-  ( ( ( X  \  (
( cls `  J
) `  y )
)  e.  J  /\  ( C  C_  ( X 
\  ( ( cls `  J ) `  y
) )  /\  A  e.  y  /\  (
( X  \  (
( cls `  J
) `  y )
)  i^i  y )  =  (/) ) )  ->  E. x  e.  J  ( C  C_  x  /\  A  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
3510, 19, 20, 29, 34syl13anc 1231 . . 3  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  E. x  e.  J  ( C  C_  x  /\  A  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
36 simpl 457 . . . 4  |-  ( ( J  e.  Reg  /\  ( C  e.  ( Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  ->  J  e.  Reg )
37 simpr1 1003 . . . . 5  |-  ( ( J  e.  Reg  /\  ( C  e.  ( Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  ->  C  e.  ( Clsd `  J
) )
384cldopn 19510 . . . . 5  |-  ( C  e.  ( Clsd `  J
)  ->  ( X  \  C )  e.  J
)
3937, 38syl 16 . . . 4  |-  ( ( J  e.  Reg  /\  ( C  e.  ( Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  ->  ( X  \  C )  e.  J )
40 simpr2 1004 . . . . 5  |-  ( ( J  e.  Reg  /\  ( C  e.  ( Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  ->  A  e.  X )
41 simpr3 1005 . . . . 5  |-  ( ( J  e.  Reg  /\  ( C  e.  ( Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  ->  -.  A  e.  C )
4240, 41eldifd 3472 . . . 4  |-  ( ( J  e.  Reg  /\  ( C  e.  ( Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  ->  A  e.  ( X  \  C
) )
43 regsep 19813 . . . 4  |-  ( ( J  e.  Reg  /\  ( X  \  C )  e.  J  /\  A  e.  ( X  \  C
) )  ->  E. y  e.  J  ( A  e.  y  /\  (
( cls `  J
) `  y )  C_  ( X  \  C
) ) )
4436, 39, 42, 43syl3anc 1229 . . 3  |-  ( ( J  e.  Reg  /\  ( C  e.  ( Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  ->  E. y  e.  J  ( A  e.  y  /\  (
( cls `  J
) `  y )  C_  ( X  \  C
) ) )
4535, 44reximddv 2919 . 2  |-  ( ( J  e.  Reg  /\  ( C  e.  ( Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  ->  E. y  e.  J  E. x  e.  J  ( C  C_  x  /\  A  e.  y  /\  ( x  i^i  y )  =  (/) ) )
46 rexcom 3005 . 2  |-  ( E. y  e.  J  E. x  e.  J  ( C  C_  x  /\  A  e.  y  /\  (
x  i^i  y )  =  (/) )  <->  E. x  e.  J  E. y  e.  J  ( C  C_  x  /\  A  e.  y  /\  ( x  i^i  y )  =  (/) ) )
4745, 46sylib 196 1  |-  ( ( J  e.  Reg  /\  ( C  e.  ( Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  ->  E. x  e.  J  E. y  e.  J  ( C  C_  x  /\  A  e.  y  /\  ( x  i^i  y )  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   E.wrex 2794    \ cdif 3458    i^i cin 3460    C_ wss 3461   (/)c0 3770   U.cuni 4234   ` cfv 5578   Topctop 19372   Clsdccld 19495   clsccl 19497   Regcreg 19788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-top 19377  df-cld 19498  df-cls 19500  df-reg 19795
This theorem is referenced by:  isreg2  19856
  Copyright terms: Public domain W3C validator