MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regsep2 Structured version   Unicode version

Theorem regsep2 19640
Description: In a regular space, a closed set is separated by open sets from a point not in it. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
t1sep.1  |-  X  = 
U. J
Assertion
Ref Expression
regsep2  |-  ( ( J  e.  Reg  /\  ( C  e.  ( Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  ->  E. x  e.  J  E. y  e.  J  ( C  C_  x  /\  A  e.  y  /\  ( x  i^i  y )  =  (/) ) )
Distinct variable groups:    x, y, A    x, C, y    x, J, y    x, X, y

Proof of Theorem regsep2
StepHypRef Expression
1 simpl 457 . . . 4  |-  ( ( J  e.  Reg  /\  ( C  e.  ( Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  ->  J  e.  Reg )
2 simpr1 1002 . . . . 5  |-  ( ( J  e.  Reg  /\  ( C  e.  ( Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  ->  C  e.  ( Clsd `  J
) )
3 t1sep.1 . . . . . 6  |-  X  = 
U. J
43cldopn 19295 . . . . 5  |-  ( C  e.  ( Clsd `  J
)  ->  ( X  \  C )  e.  J
)
52, 4syl 16 . . . 4  |-  ( ( J  e.  Reg  /\  ( C  e.  ( Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  ->  ( X  \  C )  e.  J )
6 simpr2 1003 . . . . 5  |-  ( ( J  e.  Reg  /\  ( C  e.  ( Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  ->  A  e.  X )
7 simpr3 1004 . . . . 5  |-  ( ( J  e.  Reg  /\  ( C  e.  ( Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  ->  -.  A  e.  C )
86, 7eldifd 3487 . . . 4  |-  ( ( J  e.  Reg  /\  ( C  e.  ( Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  ->  A  e.  ( X  \  C
) )
9 regsep 19598 . . . 4  |-  ( ( J  e.  Reg  /\  ( X  \  C )  e.  J  /\  A  e.  ( X  \  C
) )  ->  E. y  e.  J  ( A  e.  y  /\  (
( cls `  J
) `  y )  C_  ( X  \  C
) ) )
101, 5, 8, 9syl3anc 1228 . . 3  |-  ( ( J  e.  Reg  /\  ( C  e.  ( Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  ->  E. y  e.  J  ( A  e.  y  /\  (
( cls `  J
) `  y )  C_  ( X  \  C
) ) )
11 regtop 19597 . . . . . . . . 9  |-  ( J  e.  Reg  ->  J  e.  Top )
1211ad2antrr 725 . . . . . . . 8  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  J  e.  Top )
13 elssuni 4275 . . . . . . . . . 10  |-  ( y  e.  J  ->  y  C_ 
U. J )
1413, 3syl6sseqr 3551 . . . . . . . . 9  |-  ( y  e.  J  ->  y  C_  X )
1514ad2antrl 727 . . . . . . . 8  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  y  C_  X
)
163clscld 19311 . . . . . . . 8  |-  ( ( J  e.  Top  /\  y  C_  X )  -> 
( ( cls `  J
) `  y )  e.  ( Clsd `  J
) )
1712, 15, 16syl2anc 661 . . . . . . 7  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  ( ( cls `  J ) `  y
)  e.  ( Clsd `  J ) )
183cldopn 19295 . . . . . . 7  |-  ( ( ( cls `  J
) `  y )  e.  ( Clsd `  J
)  ->  ( X  \  ( ( cls `  J
) `  y )
)  e.  J )
1917, 18syl 16 . . . . . 6  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  ( X  \ 
( ( cls `  J
) `  y )
)  e.  J )
20 simprrr 764 . . . . . . 7  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  ( ( cls `  J ) `  y
)  C_  ( X  \  C ) )
213clsss3 19323 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  y  C_  X )  -> 
( ( cls `  J
) `  y )  C_  X )
2212, 15, 21syl2anc 661 . . . . . . . 8  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  ( ( cls `  J ) `  y
)  C_  X )
23 simplr1 1038 . . . . . . . . 9  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  C  e.  (
Clsd `  J )
)
243cldss 19293 . . . . . . . . 9  |-  ( C  e.  ( Clsd `  J
)  ->  C  C_  X
)
2523, 24syl 16 . . . . . . . 8  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  C  C_  X
)
26 ssconb 3637 . . . . . . . 8  |-  ( ( ( ( cls `  J
) `  y )  C_  X  /\  C  C_  X )  ->  (
( ( cls `  J
) `  y )  C_  ( X  \  C
)  <->  C  C_  ( X 
\  ( ( cls `  J ) `  y
) ) ) )
2722, 25, 26syl2anc 661 . . . . . . 7  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  ( ( ( cls `  J ) `
 y )  C_  ( X  \  C )  <-> 
C  C_  ( X  \  ( ( cls `  J
) `  y )
) ) )
2820, 27mpbid 210 . . . . . 6  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  C  C_  ( X  \  ( ( cls `  J ) `  y
) ) )
29 simprrl 763 . . . . . 6  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  A  e.  y )
303sscls 19320 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  y  C_  X )  -> 
y  C_  ( ( cls `  J ) `  y ) )
3112, 15, 30syl2anc 661 . . . . . . . 8  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  y  C_  (
( cls `  J
) `  y )
)
32 sslin 3724 . . . . . . . 8  |-  ( y 
C_  ( ( cls `  J ) `  y
)  ->  ( ( X  \  ( ( cls `  J ) `  y
) )  i^i  y
)  C_  ( ( X  \  ( ( cls `  J ) `  y
) )  i^i  (
( cls `  J
) `  y )
) )
3331, 32syl 16 . . . . . . 7  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  ( ( X 
\  ( ( cls `  J ) `  y
) )  i^i  y
)  C_  ( ( X  \  ( ( cls `  J ) `  y
) )  i^i  (
( cls `  J
) `  y )
) )
34 incom 3691 . . . . . . . 8  |-  ( ( X  \  ( ( cls `  J ) `
 y ) )  i^i  ( ( cls `  J ) `  y
) )  =  ( ( ( cls `  J
) `  y )  i^i  ( X  \  (
( cls `  J
) `  y )
) )
35 disjdif 3899 . . . . . . . 8  |-  ( ( ( cls `  J
) `  y )  i^i  ( X  \  (
( cls `  J
) `  y )
) )  =  (/)
3634, 35eqtri 2496 . . . . . . 7  |-  ( ( X  \  ( ( cls `  J ) `
 y ) )  i^i  ( ( cls `  J ) `  y
) )  =  (/)
37 sseq0 3817 . . . . . . 7  |-  ( ( ( ( X  \ 
( ( cls `  J
) `  y )
)  i^i  y )  C_  ( ( X  \ 
( ( cls `  J
) `  y )
)  i^i  ( ( cls `  J ) `  y ) )  /\  ( ( X  \ 
( ( cls `  J
) `  y )
)  i^i  ( ( cls `  J ) `  y ) )  =  (/) )  ->  ( ( X  \  ( ( cls `  J ) `
 y ) )  i^i  y )  =  (/) )
3833, 36, 37sylancl 662 . . . . . 6  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  ( ( X 
\  ( ( cls `  J ) `  y
) )  i^i  y
)  =  (/) )
39 sseq2 3526 . . . . . . . 8  |-  ( x  =  ( X  \ 
( ( cls `  J
) `  y )
)  ->  ( C  C_  x  <->  C  C_  ( X 
\  ( ( cls `  J ) `  y
) ) ) )
40 ineq1 3693 . . . . . . . . 9  |-  ( x  =  ( X  \ 
( ( cls `  J
) `  y )
)  ->  ( x  i^i  y )  =  ( ( X  \  (
( cls `  J
) `  y )
)  i^i  y )
)
4140eqeq1d 2469 . . . . . . . 8  |-  ( x  =  ( X  \ 
( ( cls `  J
) `  y )
)  ->  ( (
x  i^i  y )  =  (/)  <->  ( ( X 
\  ( ( cls `  J ) `  y
) )  i^i  y
)  =  (/) ) )
4239, 413anbi13d 1301 . . . . . . 7  |-  ( x  =  ( X  \ 
( ( cls `  J
) `  y )
)  ->  ( ( C  C_  x  /\  A  e.  y  /\  (
x  i^i  y )  =  (/) )  <->  ( C  C_  ( X  \  (
( cls `  J
) `  y )
)  /\  A  e.  y  /\  ( ( X 
\  ( ( cls `  J ) `  y
) )  i^i  y
)  =  (/) ) ) )
4342rspcev 3214 . . . . . 6  |-  ( ( ( X  \  (
( cls `  J
) `  y )
)  e.  J  /\  ( C  C_  ( X 
\  ( ( cls `  J ) `  y
) )  /\  A  e.  y  /\  (
( X  \  (
( cls `  J
) `  y )
)  i^i  y )  =  (/) ) )  ->  E. x  e.  J  ( C  C_  x  /\  A  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
4419, 28, 29, 38, 43syl13anc 1230 . . . . 5  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  (
y  e.  J  /\  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) ) ) )  ->  E. x  e.  J  ( C  C_  x  /\  A  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
4544expr 615 . . . 4  |-  ( ( ( J  e.  Reg  /\  ( C  e.  (
Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  /\  y  e.  J )  ->  (
( A  e.  y  /\  ( ( cls `  J ) `  y
)  C_  ( X  \  C ) )  ->  E. x  e.  J  ( C  C_  x  /\  A  e.  y  /\  ( x  i^i  y
)  =  (/) ) ) )
4645reximdva 2938 . . 3  |-  ( ( J  e.  Reg  /\  ( C  e.  ( Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  ->  ( E. y  e.  J  ( A  e.  y  /\  ( ( cls `  J
) `  y )  C_  ( X  \  C
) )  ->  E. y  e.  J  E. x  e.  J  ( C  C_  x  /\  A  e.  y  /\  ( x  i^i  y )  =  (/) ) ) )
4710, 46mpd 15 . 2  |-  ( ( J  e.  Reg  /\  ( C  e.  ( Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  ->  E. y  e.  J  E. x  e.  J  ( C  C_  x  /\  A  e.  y  /\  ( x  i^i  y )  =  (/) ) )
48 rexcom 3023 . 2  |-  ( E. y  e.  J  E. x  e.  J  ( C  C_  x  /\  A  e.  y  /\  (
x  i^i  y )  =  (/) )  <->  E. x  e.  J  E. y  e.  J  ( C  C_  x  /\  A  e.  y  /\  ( x  i^i  y )  =  (/) ) )
4947, 48sylib 196 1  |-  ( ( J  e.  Reg  /\  ( C  e.  ( Clsd `  J )  /\  A  e.  X  /\  -.  A  e.  C
) )  ->  E. x  e.  J  E. y  e.  J  ( C  C_  x  /\  A  e.  y  /\  ( x  i^i  y )  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   E.wrex 2815    \ cdif 3473    i^i cin 3475    C_ wss 3476   (/)c0 3785   U.cuni 4245   ` cfv 5586   Topctop 19158   Clsdccld 19280   clsccl 19282   Regcreg 19573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-top 19163  df-cld 19283  df-cls 19285  df-reg 19580
This theorem is referenced by:  isreg2  19641
  Copyright terms: Public domain W3C validator