MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recsval Structured version   Unicode version

Theorem recsval 6852
Description: Strong transfinite recursion in terms of all previous values. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Assertion
Ref Expression
recsval  |-  ( A  e.  On  ->  (recs ( F ) `  A
)  =  ( F `
 (recs ( F )  |`  A )
) )

Proof of Theorem recsval
StepHypRef Expression
1 eqid 2438 . 2  |- recs ( F )  = recs ( F )
21tfr2 6849 1  |-  ( A  e.  On  ->  (recs ( F ) `  A
)  =  ( F `
 (recs ( F )  |`  A )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756   Oncon0 4714    |` cres 4837   ` cfv 5413  recscrecs 6823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-recs 6824
This theorem is referenced by:  cfsmolem  8431  dnnumch1  29368  aomclem6  29383
  Copyright terms: Public domain W3C validator