MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recreclt Structured version   Unicode version

Theorem recreclt 10451
Description: Given a positive number  A, construct a new positive number less than both  A and 1. (Contributed by NM, 28-Dec-2005.)
Assertion
Ref Expression
recreclt  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  / 
( 1  +  ( 1  /  A ) ) )  <  1  /\  ( 1  /  (
1  +  ( 1  /  A ) ) )  <  A ) )

Proof of Theorem recreclt
StepHypRef Expression
1 recgt0 10393 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( 1  /  A ) )
2 gt0ne0 10024 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  =/=  0 )
3 rereccl 10269 . . . . . 6  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( 1  /  A
)  e.  RR )
42, 3syldan 470 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  e.  RR )
5 1re 9598 . . . . 5  |-  1  e.  RR
6 ltaddpos 10049 . . . . 5  |-  ( ( ( 1  /  A
)  e.  RR  /\  1  e.  RR )  ->  ( 0  <  (
1  /  A )  <->  1  <  ( 1  +  ( 1  /  A ) ) ) )
74, 5, 6sylancl 662 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 0  <  (
1  /  A )  <->  1  <  ( 1  +  ( 1  /  A ) ) ) )
81, 7mpbid 210 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
1  <  ( 1  +  ( 1  /  A ) ) )
9 readdcl 9578 . . . . 5  |-  ( ( 1  e.  RR  /\  ( 1  /  A
)  e.  RR )  ->  ( 1  +  ( 1  /  A
) )  e.  RR )
105, 4, 9sylancr 663 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  +  ( 1  /  A ) )  e.  RR )
11 0lt1 10082 . . . . . 6  |-  0  <  1
12 0re 9599 . . . . . . . 8  |-  0  e.  RR
13 lttr 9664 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  (
1  +  ( 1  /  A ) )  e.  RR )  -> 
( ( 0  <  1  /\  1  < 
( 1  +  ( 1  /  A ) ) )  ->  0  <  ( 1  +  ( 1  /  A ) ) ) )
1412, 5, 13mp3an12 1315 . . . . . . 7  |-  ( ( 1  +  ( 1  /  A ) )  e.  RR  ->  (
( 0  <  1  /\  1  <  ( 1  +  ( 1  /  A ) ) )  ->  0  <  (
1  +  ( 1  /  A ) ) ) )
1510, 14syl 16 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 0  <  1  /\  1  < 
( 1  +  ( 1  /  A ) ) )  ->  0  <  ( 1  +  ( 1  /  A ) ) ) )
1611, 15mpani 676 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  <  (
1  +  ( 1  /  A ) )  ->  0  <  (
1  +  ( 1  /  A ) ) ) )
178, 16mpd 15 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( 1  +  ( 1  /  A ) ) )
18 recgt1 10448 . . . 4  |-  ( ( ( 1  +  ( 1  /  A ) )  e.  RR  /\  0  <  ( 1  +  ( 1  /  A
) ) )  -> 
( 1  <  (
1  +  ( 1  /  A ) )  <-> 
( 1  /  (
1  +  ( 1  /  A ) ) )  <  1 ) )
1910, 17, 18syl2anc 661 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  <  (
1  +  ( 1  /  A ) )  <-> 
( 1  /  (
1  +  ( 1  /  A ) ) )  <  1 ) )
208, 19mpbid 210 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  (
1  +  ( 1  /  A ) ) )  <  1 )
21 ltaddpos 10049 . . . . . 6  |-  ( ( 1  e.  RR  /\  ( 1  /  A
)  e.  RR )  ->  ( 0  <  1  <->  ( 1  /  A )  <  (
( 1  /  A
)  +  1 ) ) )
225, 4, 21sylancr 663 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 0  <  1  <->  ( 1  /  A )  <  ( ( 1  /  A )  +  1 ) ) )
2311, 22mpbii 211 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  <  ( (
1  /  A )  +  1 ) )
244recnd 9625 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  e.  CC )
25 ax-1cn 9553 . . . . 5  |-  1  e.  CC
26 addcom 9769 . . . . 5  |-  ( ( ( 1  /  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( 1  /  A )  +  1 )  =  ( 1  +  ( 1  /  A ) ) )
2724, 25, 26sylancl 662 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  /  A )  +  1 )  =  ( 1  +  ( 1  /  A ) ) )
2823, 27breqtrd 4461 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  <  ( 1  +  ( 1  /  A ) ) )
29 simpl 457 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  RR )
30 simpr 461 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  A )
31 ltrec1 10439 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( ( 1  +  ( 1  /  A ) )  e.  RR  /\  0  < 
( 1  +  ( 1  /  A ) ) ) )  -> 
( ( 1  /  A )  <  (
1  +  ( 1  /  A ) )  <-> 
( 1  /  (
1  +  ( 1  /  A ) ) )  <  A ) )
3229, 30, 10, 17, 31syl22anc 1230 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  /  A )  <  (
1  +  ( 1  /  A ) )  <-> 
( 1  /  (
1  +  ( 1  /  A ) ) )  <  A ) )
3328, 32mpbid 210 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  (
1  +  ( 1  /  A ) ) )  <  A )
3420, 33jca 532 1  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  / 
( 1  +  ( 1  /  A ) ) )  <  1  /\  ( 1  /  (
1  +  ( 1  /  A ) ) )  <  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804    =/= wne 2638   class class class wbr 4437  (class class class)co 6281   CCcc 9493   RRcr 9494   0cc0 9495   1c1 9496    + caddc 9498    < clt 9631    / cdiv 10213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-po 4790  df-so 4791  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator