MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recosf1o Structured version   Unicode version

Theorem recosf1o 22671
Description: The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.)
Assertion
Ref Expression
recosf1o  |-  ( cos  |`  ( 0 [,] pi ) ) : ( 0 [,] pi ) -1-1-onto-> (
-u 1 [,] 1
)

Proof of Theorem recosf1o
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cosf 13720 . . . . . 6  |-  cos : CC
--> CC
2 ffn 5730 . . . . . 6  |-  ( cos
: CC --> CC  ->  cos 
Fn  CC )
31, 2ax-mp 5 . . . . 5  |-  cos  Fn  CC
4 0re 9595 . . . . . . 7  |-  0  e.  RR
5 pire 22601 . . . . . . 7  |-  pi  e.  RR
6 iccssre 11605 . . . . . . 7  |-  ( ( 0  e.  RR  /\  pi  e.  RR )  -> 
( 0 [,] pi )  C_  RR )
74, 5, 6mp2an 672 . . . . . 6  |-  ( 0 [,] pi )  C_  RR
8 ax-resscn 9548 . . . . . 6  |-  RR  C_  CC
97, 8sstri 3513 . . . . 5  |-  ( 0 [,] pi )  C_  CC
10 fnssres 5693 . . . . 5  |-  ( ( cos  Fn  CC  /\  ( 0 [,] pi )  C_  CC )  -> 
( cos  |`  ( 0 [,] pi ) )  Fn  ( 0 [,] pi ) )
113, 9, 10mp2an 672 . . . 4  |-  ( cos  |`  ( 0 [,] pi ) )  Fn  (
0 [,] pi )
12 fvres 5879 . . . . . 6  |-  ( x  e.  ( 0 [,] pi )  ->  (
( cos  |`  ( 0 [,] pi ) ) `
 x )  =  ( cos `  x
) )
137sseli 3500 . . . . . . 7  |-  ( x  e.  ( 0 [,] pi )  ->  x  e.  RR )
14 cosbnd2 13778 . . . . . . 7  |-  ( x  e.  RR  ->  ( cos `  x )  e.  ( -u 1 [,] 1 ) )
1513, 14syl 16 . . . . . 6  |-  ( x  e.  ( 0 [,] pi )  ->  ( cos `  x )  e.  ( -u 1 [,] 1 ) )
1612, 15eqeltrd 2555 . . . . 5  |-  ( x  e.  ( 0 [,] pi )  ->  (
( cos  |`  ( 0 [,] pi ) ) `
 x )  e.  ( -u 1 [,] 1 ) )
1716rgen 2824 . . . 4  |-  A. x  e.  ( 0 [,] pi ) ( ( cos  |`  ( 0 [,] pi ) ) `  x
)  e.  ( -u
1 [,] 1 )
18 ffnfv 6046 . . . 4  |-  ( ( cos  |`  ( 0 [,] pi ) ) : ( 0 [,] pi ) --> ( -u
1 [,] 1 )  <-> 
( ( cos  |`  (
0 [,] pi ) )  Fn  ( 0 [,] pi )  /\  A. x  e.  ( 0 [,] pi ) ( ( cos  |`  (
0 [,] pi ) ) `  x )  e.  ( -u 1 [,] 1 ) ) )
1911, 17, 18mpbir2an 918 . . 3  |-  ( cos  |`  ( 0 [,] pi ) ) : ( 0 [,] pi ) --> ( -u 1 [,] 1 )
20 fvres 5879 . . . . . 6  |-  ( y  e.  ( 0 [,] pi )  ->  (
( cos  |`  ( 0 [,] pi ) ) `
 y )  =  ( cos `  y
) )
2112, 20eqeqan12d 2490 . . . . 5  |-  ( ( x  e.  ( 0 [,] pi )  /\  y  e.  ( 0 [,] pi ) )  ->  ( ( ( cos  |`  ( 0 [,] pi ) ) `
 x )  =  ( ( cos  |`  (
0 [,] pi ) ) `  y )  <-> 
( cos `  x
)  =  ( cos `  y ) ) )
22 cos11 22669 . . . . . 6  |-  ( ( x  e.  ( 0 [,] pi )  /\  y  e.  ( 0 [,] pi ) )  ->  ( x  =  y  <->  ( cos `  x
)  =  ( cos `  y ) ) )
2322biimprd 223 . . . . 5  |-  ( ( x  e.  ( 0 [,] pi )  /\  y  e.  ( 0 [,] pi ) )  ->  ( ( cos `  x )  =  ( cos `  y )  ->  x  =  y ) )
2421, 23sylbid 215 . . . 4  |-  ( ( x  e.  ( 0 [,] pi )  /\  y  e.  ( 0 [,] pi ) )  ->  ( ( ( cos  |`  ( 0 [,] pi ) ) `
 x )  =  ( ( cos  |`  (
0 [,] pi ) ) `  y )  ->  x  =  y ) )
2524rgen2a 2891 . . 3  |-  A. x  e.  ( 0 [,] pi ) A. y  e.  ( 0 [,] pi ) ( ( ( cos  |`  ( 0 [,] pi ) ) `  x
)  =  ( ( cos  |`  ( 0 [,] pi ) ) `
 y )  ->  x  =  y )
26 dff13 6153 . . 3  |-  ( ( cos  |`  ( 0 [,] pi ) ) : ( 0 [,] pi ) -1-1-> ( -u
1 [,] 1 )  <-> 
( ( cos  |`  (
0 [,] pi ) ) : ( 0 [,] pi ) --> (
-u 1 [,] 1
)  /\  A. x  e.  ( 0 [,] pi ) A. y  e.  ( 0 [,] pi ) ( ( ( cos  |`  ( 0 [,] pi ) ) `  x
)  =  ( ( cos  |`  ( 0 [,] pi ) ) `
 y )  ->  x  =  y )
) )
2719, 25, 26mpbir2an 918 . 2  |-  ( cos  |`  ( 0 [,] pi ) ) : ( 0 [,] pi )
-1-1-> ( -u 1 [,] 1 )
284a1i 11 . . . . . 6  |-  ( x  e.  ( -u 1 [,] 1 )  ->  0  e.  RR )
295a1i 11 . . . . . 6  |-  ( x  e.  ( -u 1 [,] 1 )  ->  pi  e.  RR )
30 neg1rr 10639 . . . . . . . 8  |-  -u 1  e.  RR
31 1re 9594 . . . . . . . 8  |-  1  e.  RR
3230, 31elicc2i 11589 . . . . . . 7  |-  ( x  e.  ( -u 1 [,] 1 )  <->  ( x  e.  RR  /\  -u 1  <_  x  /\  x  <_ 
1 ) )
3332simp1bi 1011 . . . . . 6  |-  ( x  e.  ( -u 1 [,] 1 )  ->  x  e.  RR )
34 pipos 22603 . . . . . . 7  |-  0  <  pi
3534a1i 11 . . . . . 6  |-  ( x  e.  ( -u 1 [,] 1 )  ->  0  <  pi )
369a1i 11 . . . . . 6  |-  ( x  e.  ( -u 1 [,] 1 )  ->  (
0 [,] pi ) 
C_  CC )
37 coscn 22590 . . . . . . 7  |-  cos  e.  ( CC -cn-> CC )
3837a1i 11 . . . . . 6  |-  ( x  e.  ( -u 1 [,] 1 )  ->  cos  e.  ( CC -cn-> CC ) )
397sseli 3500 . . . . . . . 8  |-  ( z  e.  ( 0 [,] pi )  ->  z  e.  RR )
4039recoscld 13739 . . . . . . 7  |-  ( z  e.  ( 0 [,] pi )  ->  ( cos `  z )  e.  RR )
4140adantl 466 . . . . . 6  |-  ( ( x  e.  ( -u
1 [,] 1 )  /\  z  e.  ( 0 [,] pi ) )  ->  ( cos `  z )  e.  RR )
42 cospi 22614 . . . . . . . 8  |-  ( cos `  pi )  =  -u
1
4332simp2bi 1012 . . . . . . . 8  |-  ( x  e.  ( -u 1 [,] 1 )  ->  -u 1  <_  x )
4442, 43syl5eqbr 4480 . . . . . . 7  |-  ( x  e.  ( -u 1 [,] 1 )  ->  ( cos `  pi )  <_  x )
4532simp3bi 1013 . . . . . . . 8  |-  ( x  e.  ( -u 1 [,] 1 )  ->  x  <_  1 )
46 cos0 13745 . . . . . . . 8  |-  ( cos `  0 )  =  1
4745, 46syl6breqr 4487 . . . . . . 7  |-  ( x  e.  ( -u 1 [,] 1 )  ->  x  <_  ( cos `  0
) )
4844, 47jca 532 . . . . . 6  |-  ( x  e.  ( -u 1 [,] 1 )  ->  (
( cos `  pi )  <_  x  /\  x  <_  ( cos `  0
) ) )
4928, 29, 33, 35, 36, 38, 41, 48ivthle2 21620 . . . . 5  |-  ( x  e.  ( -u 1 [,] 1 )  ->  E. y  e.  ( 0 [,] pi ) ( cos `  y
)  =  x )
50 eqcom 2476 . . . . . . 7  |-  ( x  =  ( ( cos  |`  ( 0 [,] pi ) ) `  y
)  <->  ( ( cos  |`  ( 0 [,] pi ) ) `  y
)  =  x )
5120eqeq1d 2469 . . . . . . 7  |-  ( y  e.  ( 0 [,] pi )  ->  (
( ( cos  |`  (
0 [,] pi ) ) `  y )  =  x  <->  ( cos `  y )  =  x ) )
5250, 51syl5bb 257 . . . . . 6  |-  ( y  e.  ( 0 [,] pi )  ->  (
x  =  ( ( cos  |`  ( 0 [,] pi ) ) `
 y )  <->  ( cos `  y )  =  x ) )
5352rexbiia 2964 . . . . 5  |-  ( E. y  e.  ( 0 [,] pi ) x  =  ( ( cos  |`  ( 0 [,] pi ) ) `  y
)  <->  E. y  e.  ( 0 [,] pi ) ( cos `  y
)  =  x )
5449, 53sylibr 212 . . . 4  |-  ( x  e.  ( -u 1 [,] 1 )  ->  E. y  e.  ( 0 [,] pi ) x  =  (
( cos  |`  ( 0 [,] pi ) ) `
 y ) )
5554rgen 2824 . . 3  |-  A. x  e.  ( -u 1 [,] 1 ) E. y  e.  ( 0 [,] pi ) x  =  (
( cos  |`  ( 0 [,] pi ) ) `
 y )
56 dffo3 6035 . . 3  |-  ( ( cos  |`  ( 0 [,] pi ) ) : ( 0 [,] pi ) -onto-> ( -u
1 [,] 1 )  <-> 
( ( cos  |`  (
0 [,] pi ) ) : ( 0 [,] pi ) --> (
-u 1 [,] 1
)  /\  A. x  e.  ( -u 1 [,] 1 ) E. y  e.  ( 0 [,] pi ) x  =  (
( cos  |`  ( 0 [,] pi ) ) `
 y ) ) )
5719, 55, 56mpbir2an 918 . 2  |-  ( cos  |`  ( 0 [,] pi ) ) : ( 0 [,] pi )
-onto-> ( -u 1 [,] 1 )
58 df-f1o 5594 . 2  |-  ( ( cos  |`  ( 0 [,] pi ) ) : ( 0 [,] pi ) -1-1-onto-> ( -u 1 [,] 1 )  <->  ( ( cos  |`  ( 0 [,] pi ) ) : ( 0 [,] pi ) -1-1-> ( -u 1 [,] 1 )  /\  ( cos  |`  ( 0 [,] pi ) ) : ( 0 [,] pi ) -onto-> ( -u 1 [,] 1 ) ) )
5927, 57, 58mpbir2an 918 1  |-  ( cos  |`  ( 0 [,] pi ) ) : ( 0 [,] pi ) -1-1-onto-> (
-u 1 [,] 1
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815    C_ wss 3476   class class class wbr 4447    |` cres 5001    Fn wfn 5582   -->wf 5583   -1-1->wf1 5584   -onto->wfo 5585   -1-1-onto->wf1o 5586   ` cfv 5587  (class class class)co 6283   CCcc 9489   RRcr 9490   0cc0 9491   1c1 9492    < clt 9627    <_ cle 9628   -ucneg 9805   [,]cicc 11531   cosccos 13661   picpi 13663   -cn->ccncf 21131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-inf2 8057  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569  ax-addf 9570  ax-mulf 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-isom 5596  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-of 6523  df-om 6680  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7829  df-fi 7870  df-sup 7900  df-oi 7934  df-card 8319  df-cda 8547  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-4 10595  df-5 10596  df-6 10597  df-7 10598  df-8 10599  df-9 10600  df-10 10601  df-n0 10795  df-z 10864  df-dec 10976  df-uz 11082  df-q 11182  df-rp 11220  df-xneg 11317  df-xadd 11318  df-xmul 11319  df-ioo 11532  df-ioc 11533  df-ico 11534  df-icc 11535  df-fz 11672  df-fzo 11792  df-fl 11896  df-seq 12075  df-exp 12134  df-fac 12321  df-bc 12348  df-hash 12373  df-shft 12862  df-cj 12894  df-re 12895  df-im 12896  df-sqrt 13030  df-abs 13031  df-limsup 13256  df-clim 13273  df-rlim 13274  df-sum 13471  df-ef 13664  df-sin 13666  df-cos 13667  df-pi 13669  df-struct 14491  df-ndx 14492  df-slot 14493  df-base 14494  df-sets 14495  df-ress 14496  df-plusg 14567  df-mulr 14568  df-starv 14569  df-sca 14570  df-vsca 14571  df-ip 14572  df-tset 14573  df-ple 14574  df-ds 14576  df-unif 14577  df-hom 14578  df-cco 14579  df-rest 14677  df-topn 14678  df-0g 14696  df-gsum 14697  df-topgen 14698  df-pt 14699  df-prds 14702  df-xrs 14756  df-qtop 14761  df-imas 14762  df-xps 14764  df-mre 14840  df-mrc 14841  df-acs 14843  df-mnd 15731  df-submnd 15784  df-mulg 15867  df-cntz 16157  df-cmn 16603  df-psmet 18198  df-xmet 18199  df-met 18200  df-bl 18201  df-mopn 18202  df-fbas 18203  df-fg 18204  df-cnfld 18208  df-top 19182  df-bases 19184  df-topon 19185  df-topsp 19186  df-cld 19302  df-ntr 19303  df-cls 19304  df-nei 19381  df-lp 19419  df-perf 19420  df-cn 19510  df-cnp 19511  df-haus 19598  df-tx 19814  df-hmeo 20007  df-fil 20098  df-fm 20190  df-flim 20191  df-flf 20192  df-xms 20574  df-ms 20575  df-tms 20576  df-cncf 21133  df-limc 22021  df-dv 22022
This theorem is referenced by:  resinf1o  22672
  Copyright terms: Public domain W3C validator