MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reconnlem2 Structured version   Visualization version   Unicode version

Theorem reconnlem2 21845
Description: Lemma for reconn 21846. (Contributed by Jeff Hankins, 17-Aug-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
reconnlem2.1  |-  ( ph  ->  A  C_  RR )
reconnlem2.2  |-  ( ph  ->  U  e.  ( topGen ` 
ran  (,) ) )
reconnlem2.3  |-  ( ph  ->  V  e.  ( topGen ` 
ran  (,) ) )
reconnlem2.4  |-  ( ph  ->  A. x  e.  A  A. y  e.  A  ( x [,] y
)  C_  A )
reconnlem2.5  |-  ( ph  ->  B  e.  ( U  i^i  A ) )
reconnlem2.6  |-  ( ph  ->  C  e.  ( V  i^i  A ) )
reconnlem2.7  |-  ( ph  ->  ( U  i^i  V
)  C_  ( RR  \  A ) )
reconnlem2.8  |-  ( ph  ->  B  <_  C )
reconnlem2.9  |-  S  =  sup ( ( U  i^i  ( B [,] C ) ) ,  RR ,  <  )
Assertion
Ref Expression
reconnlem2  |-  ( ph  ->  -.  A  C_  ( U  u.  V )
)
Distinct variable groups:    x, y, A    x, B, y    y, C
Allowed substitution hints:    ph( x, y)    C( x)    S( x, y)    U( x, y)    V( x, y)

Proof of Theorem reconnlem2
Dummy variables  w  z  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reconnlem2.9 . . . . . . . . . . 11  |-  S  =  sup ( ( U  i^i  ( B [,] C ) ) ,  RR ,  <  )
2 inss2 3653 . . . . . . . . . . . . 13  |-  ( U  i^i  ( B [,] C ) )  C_  ( B [,] C )
3 inss2 3653 . . . . . . . . . . . . . . . 16  |-  ( U  i^i  A )  C_  A
4 reconnlem2.5 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  e.  ( U  i^i  A ) )
53, 4sseldi 3430 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  A )
6 inss2 3653 . . . . . . . . . . . . . . . 16  |-  ( V  i^i  A )  C_  A
7 reconnlem2.6 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  C  e.  ( V  i^i  A ) )
86, 7sseldi 3430 . . . . . . . . . . . . . . 15  |-  ( ph  ->  C  e.  A )
9 reconnlem2.4 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. x  e.  A  A. y  e.  A  ( x [,] y
)  C_  A )
10 oveq1 6297 . . . . . . . . . . . . . . . . 17  |-  ( x  =  B  ->  (
x [,] y )  =  ( B [,] y ) )
1110sseq1d 3459 . . . . . . . . . . . . . . . 16  |-  ( x  =  B  ->  (
( x [,] y
)  C_  A  <->  ( B [,] y )  C_  A
) )
12 oveq2 6298 . . . . . . . . . . . . . . . . 17  |-  ( y  =  C  ->  ( B [,] y )  =  ( B [,] C
) )
1312sseq1d 3459 . . . . . . . . . . . . . . . 16  |-  ( y  =  C  ->  (
( B [,] y
)  C_  A  <->  ( B [,] C )  C_  A
) )
1411, 13rspc2va 3160 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  A  /\  C  e.  A
)  /\  A. x  e.  A  A. y  e.  A  ( x [,] y )  C_  A
)  ->  ( B [,] C )  C_  A
)
155, 8, 9, 14syl21anc 1267 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B [,] C
)  C_  A )
16 reconnlem2.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  C_  RR )
1715, 16sstrd 3442 . . . . . . . . . . . . 13  |-  ( ph  ->  ( B [,] C
)  C_  RR )
182, 17syl5ss 3443 . . . . . . . . . . . 12  |-  ( ph  ->  ( U  i^i  ( B [,] C ) ) 
C_  RR )
19 inss1 3652 . . . . . . . . . . . . . . 15  |-  ( U  i^i  A )  C_  U
2019, 4sseldi 3430 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  U )
2116, 5sseldd 3433 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  e.  RR )
2221rexrd 9690 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  RR* )
2316, 8sseldd 3433 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  C  e.  RR )
2423rexrd 9690 . . . . . . . . . . . . . . 15  |-  ( ph  ->  C  e.  RR* )
25 reconnlem2.8 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  <_  C )
26 lbicc2 11748 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  B  <_  C )  ->  B  e.  ( B [,] C
) )
2722, 24, 25, 26syl3anc 1268 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  ( B [,] C ) )
2820, 27elind 3618 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  ( U  i^i  ( B [,] C ) ) )
29 ne0i 3737 . . . . . . . . . . . . 13  |-  ( B  e.  ( U  i^i  ( B [,] C ) )  ->  ( U  i^i  ( B [,] C
) )  =/=  (/) )
3028, 29syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( U  i^i  ( B [,] C ) )  =/=  (/) )
312sseli 3428 . . . . . . . . . . . . . . 15  |-  ( w  e.  ( U  i^i  ( B [,] C ) )  ->  w  e.  ( B [,] C ) )
32 elicc2 11699 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( w  e.  ( B [,] C )  <-> 
( w  e.  RR  /\  B  <_  w  /\  w  <_  C ) ) )
3321, 23, 32syl2anc 667 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( w  e.  ( B [,] C )  <-> 
( w  e.  RR  /\  B  <_  w  /\  w  <_  C ) ) )
34 simp3 1010 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  RR  /\  B  <_  w  /\  w  <_  C )  ->  w  <_  C )
3533, 34syl6bi 232 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( w  e.  ( B [,] C )  ->  w  <_  C
) )
3631, 35syl5 33 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( w  e.  ( U  i^i  ( B [,] C ) )  ->  w  <_  C
) )
3736ralrimiv 2800 . . . . . . . . . . . . 13  |-  ( ph  ->  A. w  e.  ( U  i^i  ( B [,] C ) ) w  <_  C )
38 breq2 4406 . . . . . . . . . . . . . . 15  |-  ( z  =  C  ->  (
w  <_  z  <->  w  <_  C ) )
3938ralbidv 2827 . . . . . . . . . . . . . 14  |-  ( z  =  C  ->  ( A. w  e.  ( U  i^i  ( B [,] C ) ) w  <_  z  <->  A. w  e.  ( U  i^i  ( B [,] C ) ) w  <_  C )
)
4039rspcev 3150 . . . . . . . . . . . . 13  |-  ( ( C  e.  RR  /\  A. w  e.  ( U  i^i  ( B [,] C ) ) w  <_  C )  ->  E. z  e.  RR  A. w  e.  ( U  i^i  ( B [,] C ) ) w  <_  z )
4123, 37, 40syl2anc 667 . . . . . . . . . . . 12  |-  ( ph  ->  E. z  e.  RR  A. w  e.  ( U  i^i  ( B [,] C ) ) w  <_  z )
42 suprcl 10569 . . . . . . . . . . . 12  |-  ( ( ( U  i^i  ( B [,] C ) ) 
C_  RR  /\  ( U  i^i  ( B [,] C ) )  =/=  (/)  /\  E. z  e.  RR  A. w  e.  ( U  i^i  ( B [,] C ) ) w  <_  z )  ->  sup ( ( U  i^i  ( B [,] C ) ) ,  RR ,  <  )  e.  RR )
4318, 30, 41, 42syl3anc 1268 . . . . . . . . . . 11  |-  ( ph  ->  sup ( ( U  i^i  ( B [,] C ) ) ,  RR ,  <  )  e.  RR )
441, 43syl5eqel 2533 . . . . . . . . . 10  |-  ( ph  ->  S  e.  RR )
45 rphalfcl 11327 . . . . . . . . . 10  |-  ( r  e.  RR+  ->  ( r  /  2 )  e.  RR+ )
46 ltaddrp 11336 . . . . . . . . . 10  |-  ( ( S  e.  RR  /\  ( r  /  2
)  e.  RR+ )  ->  S  <  ( S  +  ( r  / 
2 ) ) )
4744, 45, 46syl2an 480 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  RR+ )  ->  S  <  ( S  +  ( r  /  2 ) ) )
4844adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  r  e.  RR+ )  ->  S  e.  RR )
4945rpred 11341 . . . . . . . . . . 11  |-  ( r  e.  RR+  ->  ( r  /  2 )  e.  RR )
50 readdcl 9622 . . . . . . . . . . 11  |-  ( ( S  e.  RR  /\  ( r  /  2
)  e.  RR )  ->  ( S  +  ( r  /  2
) )  e.  RR )
5144, 49, 50syl2an 480 . . . . . . . . . 10  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( S  +  ( r  / 
2 ) )  e.  RR )
5248, 51ltnled 9782 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( S  <  ( S  +  ( r  /  2 ) )  <->  -.  ( S  +  ( r  / 
2 ) )  <_  S ) )
5347, 52mpbid 214 . . . . . . . 8  |-  ( (
ph  /\  r  e.  RR+ )  ->  -.  ( S  +  ( r  /  2 ) )  <_  S )
5418ad2antrr 732 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  ( U  i^i  ( B [,] C ) )  C_  RR )
5530ad2antrr 732 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  ( U  i^i  ( B [,] C ) )  =/=  (/) )
5641ad2antrr 732 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  E. z  e.  RR  A. w  e.  ( U  i^i  ( B [,] C ) ) w  <_  z )
57 inss1 3652 . . . . . . . . . . . 12  |-  ( U  i^i  ( -oo (,) C ) )  C_  U
58 simpr 463 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )
5957, 58sseldi 3430 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  ( S  +  ( r  /  2 ) )  e.  U )
6051adantr 467 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  ( S  +  ( r  /  2 ) )  e.  RR )
6121ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  B  e.  RR )
6244ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  S  e.  RR )
63 suprub 10570 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( U  i^i  ( B [,] C ) )  C_  RR  /\  ( U  i^i  ( B [,] C ) )  =/=  (/)  /\  E. z  e.  RR  A. w  e.  ( U  i^i  ( B [,] C ) ) w  <_  z )  /\  B  e.  ( U  i^i  ( B [,] C ) ) )  ->  B  <_  sup ( ( U  i^i  ( B [,] C ) ) ,  RR ,  <  ) )
6418, 30, 41, 28, 63syl31anc 1271 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  <_  sup (
( U  i^i  ( B [,] C ) ) ,  RR ,  <  ) )
6564, 1syl6breqr 4443 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  <_  S )
6665ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  B  <_  S )
6747adantr 467 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  S  <  ( S  +  ( r  /  2 ) ) )
6862, 60, 67ltled 9783 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  S  <_  ( S  +  ( r  /  2 ) ) )
6961, 62, 60, 66, 68letrd 9792 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  B  <_  ( S  +  ( r  /  2 ) ) )
7023ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  C  e.  RR )
71 inss2 3653 . . . . . . . . . . . . . . 15  |-  ( U  i^i  ( -oo (,) C ) )  C_  ( -oo (,) C )
7271, 58sseldi 3430 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  ( S  +  ( r  /  2 ) )  e.  ( -oo (,) C ) )
73 eliooord 11694 . . . . . . . . . . . . . . 15  |-  ( ( S  +  ( r  /  2 ) )  e.  ( -oo (,) C )  ->  ( -oo  <  ( S  +  ( r  /  2
) )  /\  ( S  +  ( r  /  2 ) )  <  C ) )
7473simprd 465 . . . . . . . . . . . . . 14  |-  ( ( S  +  ( r  /  2 ) )  e.  ( -oo (,) C )  ->  ( S  +  ( r  /  2 ) )  <  C )
7572, 74syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  ( S  +  ( r  /  2 ) )  <  C )
7660, 70, 75ltled 9783 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  ( S  +  ( r  /  2 ) )  <_  C )
77 elicc2 11699 . . . . . . . . . . . . 13  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( ( S  +  ( r  /  2
) )  e.  ( B [,] C )  <-> 
( ( S  +  ( r  /  2
) )  e.  RR  /\  B  <_  ( S  +  ( r  / 
2 ) )  /\  ( S  +  (
r  /  2 ) )  <_  C )
) )
7861, 70, 77syl2anc 667 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  (
( S  +  ( r  /  2 ) )  e.  ( B [,] C )  <->  ( ( S  +  ( r  /  2 ) )  e.  RR  /\  B  <_  ( S  +  ( r  /  2 ) )  /\  ( S  +  ( r  / 
2 ) )  <_  C ) ) )
7960, 69, 76, 78mpbir3and 1191 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  ( S  +  ( r  /  2 ) )  e.  ( B [,] C ) )
8059, 79elind 3618 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( B [,] C ) ) )
81 suprub 10570 . . . . . . . . . 10  |-  ( ( ( ( U  i^i  ( B [,] C ) )  C_  RR  /\  ( U  i^i  ( B [,] C ) )  =/=  (/)  /\  E. z  e.  RR  A. w  e.  ( U  i^i  ( B [,] C ) ) w  <_  z )  /\  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( B [,] C ) ) )  ->  ( S  +  ( r  /  2
) )  <_  sup ( ( U  i^i  ( B [,] C ) ) ,  RR ,  <  ) )
8254, 55, 56, 80, 81syl31anc 1271 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  ( S  +  ( r  /  2 ) )  <_  sup ( ( U  i^i  ( B [,] C ) ) ,  RR ,  <  )
)
8382, 1syl6breqr 4443 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  ( S  +  ( r  /  2 ) )  <_  S )
8453, 83mtand 665 . . . . . . 7  |-  ( (
ph  /\  r  e.  RR+ )  ->  -.  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) )
85 eqid 2451 . . . . . . . . . . . . 13  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
8685remetdval 21807 . . . . . . . . . . . 12  |-  ( ( ( S  +  ( r  /  2 ) )  e.  RR  /\  S  e.  RR )  ->  ( ( S  +  ( r  /  2
) ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) S )  =  ( abs `  (
( S  +  ( r  /  2 ) )  -  S ) ) )
8751, 48, 86syl2anc 667 . . . . . . . . . . 11  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( ( S  +  ( r  /  2 ) ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) S )  =  ( abs `  ( ( S  +  ( r  /  2 ) )  -  S ) ) )
8848recnd 9669 . . . . . . . . . . . . 13  |-  ( (
ph  /\  r  e.  RR+ )  ->  S  e.  CC )
8949adantl 468 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( r  /  2 )  e.  RR )
9089recnd 9669 . . . . . . . . . . . . 13  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( r  /  2 )  e.  CC )
9188, 90pncan2d 9988 . . . . . . . . . . . 12  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( ( S  +  ( r  /  2 ) )  -  S )  =  ( r  /  2
) )
9291fveq2d 5869 . . . . . . . . . . 11  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( abs `  ( ( S  +  ( r  /  2
) )  -  S
) )  =  ( abs `  ( r  /  2 ) ) )
9345adantl 468 . . . . . . . . . . . 12  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( r  /  2 )  e.  RR+ )
94 rpre 11308 . . . . . . . . . . . . 13  |-  ( ( r  /  2 )  e.  RR+  ->  ( r  /  2 )  e.  RR )
95 rpge0 11314 . . . . . . . . . . . . 13  |-  ( ( r  /  2 )  e.  RR+  ->  0  <_ 
( r  /  2
) )
9694, 95absidd 13484 . . . . . . . . . . . 12  |-  ( ( r  /  2 )  e.  RR+  ->  ( abs `  ( r  /  2
) )  =  ( r  /  2 ) )
9793, 96syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( abs `  ( r  /  2
) )  =  ( r  /  2 ) )
9887, 92, 973eqtrd 2489 . . . . . . . . . 10  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( ( S  +  ( r  /  2 ) ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) S )  =  ( r  /  2 ) )
99 rphalflt 11329 . . . . . . . . . . 11  |-  ( r  e.  RR+  ->  ( r  /  2 )  < 
r )
10099adantl 468 . . . . . . . . . 10  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( r  /  2 )  < 
r )
10198, 100eqbrtrd 4423 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( ( S  +  ( r  /  2 ) ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) S )  <  r
)
10285rexmet 21809 . . . . . . . . . . 11  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR )
103102a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR ) )
104 rpxr 11309 . . . . . . . . . . 11  |-  ( r  e.  RR+  ->  r  e. 
RR* )
105104adantl 468 . . . . . . . . . 10  |-  ( (
ph  /\  r  e.  RR+ )  ->  r  e.  RR* )
106 elbl3 21407 . . . . . . . . . 10  |-  ( ( ( ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR )  /\  r  e.  RR* )  /\  ( S  e.  RR  /\  ( S  +  ( r  /  2 ) )  e.  RR ) )  ->  ( ( S  +  ( r  / 
2 ) )  e.  ( S ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) r )  <->  ( ( S  +  ( r  /  2 ) ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) S )  <  r
) )
107103, 105, 48, 51, 106syl22anc 1269 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( ( S  +  ( r  /  2 ) )  e.  ( S (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  <->  ( ( S  +  ( r  / 
2 ) ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) S )  <  r ) )
108101, 107mpbird 236 . . . . . . . 8  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( S  +  ( r  / 
2 ) )  e.  ( S ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) r ) )
109 ssel 3426 . . . . . . . 8  |-  ( ( S ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  ( U  i^i  ( -oo (,) C
) )  ->  (
( S  +  ( r  /  2 ) )  e.  ( S ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  ->  ( S  +  ( r  / 
2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) ) )
110108, 109syl5com 31 . . . . . . 7  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( ( S ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  ( U  i^i  ( -oo (,) C
) )  ->  ( S  +  ( r  /  2 ) )  e.  ( U  i^i  ( -oo (,) C ) ) ) )
11184, 110mtod 181 . . . . . 6  |-  ( (
ph  /\  r  e.  RR+ )  ->  -.  ( S ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  ( U  i^i  ( -oo (,) C
) ) )
112111nrexdv 2843 . . . . 5  |-  ( ph  ->  -.  E. r  e.  RR+  ( S ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) r )  C_  ( U  i^i  ( -oo (,) C ) ) )
11344adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  S  e.  U )  ->  S  e.  RR )
114 mnflt 11425 . . . . . . . . . 10  |-  ( S  e.  RR  -> -oo  <  S )
115113, 114syl 17 . . . . . . . . 9  |-  ( (
ph  /\  S  e.  U )  -> -oo  <  S )
116 suprleub 10573 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( U  i^i  ( B [,] C ) )  C_  RR  /\  ( U  i^i  ( B [,] C ) )  =/=  (/)  /\  E. z  e.  RR  A. w  e.  ( U  i^i  ( B [,] C ) ) w  <_  z )  /\  C  e.  RR )  ->  ( sup (
( U  i^i  ( B [,] C ) ) ,  RR ,  <  )  <_  C  <->  A. w  e.  ( U  i^i  ( B [,] C ) ) w  <_  C )
)
11718, 30, 41, 23, 116syl31anc 1271 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( sup ( ( U  i^i  ( B [,] C ) ) ,  RR ,  <  )  <_  C  <->  A. w  e.  ( U  i^i  ( B [,] C ) ) w  <_  C )
)
11837, 117mpbird 236 . . . . . . . . . . . . . . 15  |-  ( ph  ->  sup ( ( U  i^i  ( B [,] C ) ) ,  RR ,  <  )  <_  C )
1191, 118syl5eqbr 4436 . . . . . . . . . . . . . 14  |-  ( ph  ->  S  <_  C )
12044, 23leloed 9778 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( S  <_  C  <->  ( S  <  C  \/  S  =  C )
) )
121119, 120mpbid 214 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S  <  C  \/  S  =  C
) )
122121ord 379 . . . . . . . . . . . 12  |-  ( ph  ->  ( -.  S  < 
C  ->  S  =  C ) )
123 elndif 3557 . . . . . . . . . . . . . . 15  |-  ( C  e.  A  ->  -.  C  e.  ( RR  \  A ) )
1248, 123syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  -.  C  e.  ( RR  \  A ) )
125 inss1 3652 . . . . . . . . . . . . . . . 16  |-  ( V  i^i  A )  C_  V
126125, 7sseldi 3430 . . . . . . . . . . . . . . 15  |-  ( ph  ->  C  e.  V )
127 elin 3617 . . . . . . . . . . . . . . . 16  |-  ( C  e.  ( U  i^i  V )  <->  ( C  e.  U  /\  C  e.  V ) )
128 reconnlem2.7 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( U  i^i  V
)  C_  ( RR  \  A ) )
129128sseld 3431 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( C  e.  ( U  i^i  V )  ->  C  e.  ( RR  \  A ) ) )
130127, 129syl5bir 222 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( C  e.  U  /\  C  e.  V )  ->  C  e.  ( RR  \  A
) ) )
131126, 130mpan2d 680 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( C  e.  U  ->  C  e.  ( RR 
\  A ) ) )
132124, 131mtod 181 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  C  e.  U
)
133 eleq1 2517 . . . . . . . . . . . . . 14  |-  ( S  =  C  ->  ( S  e.  U  <->  C  e.  U ) )
134133notbid 296 . . . . . . . . . . . . 13  |-  ( S  =  C  ->  ( -.  S  e.  U  <->  -.  C  e.  U ) )
135132, 134syl5ibrcom 226 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  =  C  ->  -.  S  e.  U ) )
136122, 135syld 45 . . . . . . . . . . 11  |-  ( ph  ->  ( -.  S  < 
C  ->  -.  S  e.  U ) )
137136con4d 109 . . . . . . . . . 10  |-  ( ph  ->  ( S  e.  U  ->  S  <  C ) )
138137imp 431 . . . . . . . . 9  |-  ( (
ph  /\  S  e.  U )  ->  S  <  C )
139 mnfxr 11414 . . . . . . . . . . 11  |- -oo  e.  RR*
140 elioo2 11677 . . . . . . . . . . 11  |-  ( ( -oo  e.  RR*  /\  C  e.  RR* )  ->  ( S  e.  ( -oo (,) C )  <->  ( S  e.  RR  /\ -oo  <  S  /\  S  <  C
) ) )
141139, 24, 140sylancr 669 . . . . . . . . . 10  |-  ( ph  ->  ( S  e.  ( -oo (,) C )  <-> 
( S  e.  RR  /\ -oo  <  S  /\  S  <  C ) ) )
142141adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  S  e.  U )  ->  ( S  e.  ( -oo (,) C )  <->  ( S  e.  RR  /\ -oo  <  S  /\  S  <  C
) ) )
143113, 115, 138, 142mpbir3and 1191 . . . . . . . 8  |-  ( (
ph  /\  S  e.  U )  ->  S  e.  ( -oo (,) C
) )
144143ex 436 . . . . . . 7  |-  ( ph  ->  ( S  e.  U  ->  S  e.  ( -oo (,) C ) ) )
145144ancld 556 . . . . . 6  |-  ( ph  ->  ( S  e.  U  ->  ( S  e.  U  /\  S  e.  ( -oo (,) C ) ) ) )
146 elin 3617 . . . . . . 7  |-  ( S  e.  ( U  i^i  ( -oo (,) C ) )  <->  ( S  e.  U  /\  S  e.  ( -oo (,) C
) ) )
147 reconnlem2.2 . . . . . . . 8  |-  ( ph  ->  U  e.  ( topGen ` 
ran  (,) ) )
148 retop 21782 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  e.  Top
149 iooretop 21786 . . . . . . . . 9  |-  ( -oo (,) C )  e.  (
topGen `  ran  (,) )
150 inopn 19929 . . . . . . . . 9  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  U  e.  ( topGen `  ran  (,) )  /\  ( -oo (,) C
)  e.  ( topGen ` 
ran  (,) ) )  -> 
( U  i^i  ( -oo (,) C ) )  e.  ( topGen `  ran  (,) ) )
151148, 149, 150mp3an13 1355 . . . . . . . 8  |-  ( U  e.  ( topGen `  ran  (,) )  ->  ( U  i^i  ( -oo (,) C
) )  e.  (
topGen `  ran  (,) )
)
152 eqid 2451 . . . . . . . . . . . 12  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )
15385, 152tgioo 21814 . . . . . . . . . . 11  |-  ( topGen ` 
ran  (,) )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) )
154153mopni2 21508 . . . . . . . . . 10  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( *Met `  RR )  /\  ( U  i^i  ( -oo (,) C ) )  e.  ( topGen `  ran  (,) )  /\  S  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  E. r  e.  RR+  ( S ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  ( U  i^i  ( -oo (,) C
) ) )
155102, 154mp3an1 1351 . . . . . . . . 9  |-  ( ( ( U  i^i  ( -oo (,) C ) )  e.  ( topGen `  ran  (,) )  /\  S  e.  ( U  i^i  ( -oo (,) C ) ) )  ->  E. r  e.  RR+  ( S (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  ( U  i^i  ( -oo (,) C
) ) )
156155ex 436 . . . . . . . 8  |-  ( ( U  i^i  ( -oo (,) C ) )  e.  ( topGen `  ran  (,) )  ->  ( S  e.  ( U  i^i  ( -oo (,) C ) )  ->  E. r  e.  RR+  ( S ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  ( U  i^i  ( -oo (,) C
) ) ) )
157147, 151, 1563syl 18 . . . . . . 7  |-  ( ph  ->  ( S  e.  ( U  i^i  ( -oo (,) C ) )  ->  E. r  e.  RR+  ( S ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  ( U  i^i  ( -oo (,) C
) ) ) )
158146, 157syl5bir 222 . . . . . 6  |-  ( ph  ->  ( ( S  e.  U  /\  S  e.  ( -oo (,) C
) )  ->  E. r  e.  RR+  ( S (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  ( U  i^i  ( -oo (,) C
) ) ) )
159145, 158syld 45 . . . . 5  |-  ( ph  ->  ( S  e.  U  ->  E. r  e.  RR+  ( S ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  ( U  i^i  ( -oo (,) C
) ) ) )
160112, 159mtod 181 . . . 4  |-  ( ph  ->  -.  S  e.  U
)
161 ltsubrp 11335 . . . . . . . . 9  |-  ( ( S  e.  RR  /\  r  e.  RR+ )  -> 
( S  -  r
)  <  S )
16244, 161sylan 474 . . . . . . . 8  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( S  -  r )  < 
S )
163 rpre 11308 . . . . . . . . . 10  |-  ( r  e.  RR+  ->  r  e.  RR )
164 resubcl 9938 . . . . . . . . . 10  |-  ( ( S  e.  RR  /\  r  e.  RR )  ->  ( S  -  r
)  e.  RR )
16544, 163, 164syl2an 480 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( S  -  r )  e.  RR )
166165, 48ltnled 9782 . . . . . . . 8  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( ( S  -  r )  <  S  <->  -.  S  <_  ( S  -  r ) ) )
167162, 166mpbid 214 . . . . . . 7  |-  ( (
ph  /\  r  e.  RR+ )  ->  -.  S  <_  ( S  -  r
) )
16885bl2ioo 21810 . . . . . . . . . 10  |-  ( ( S  e.  RR  /\  r  e.  RR )  ->  ( S ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) r )  =  ( ( S  -  r ) (,) ( S  +  r )
) )
16944, 163, 168syl2an 480 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( S
( ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  =  ( ( S  -  r ) (,) ( S  +  r ) ) )
170169sseq1d 3459 . . . . . . . 8  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( ( S ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  V  <->  ( ( S  -  r ) (,) ( S  +  r ) )  C_  V
) )
17115ad2antrr 732 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
( S  -  r
) (,) ( S  +  r ) ) 
C_  V )  -> 
( B [,] C
)  C_  A )
1722, 171syl5ss 3443 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
( S  -  r
) (,) ( S  +  r ) ) 
C_  V )  -> 
( U  i^i  ( B [,] C ) ) 
C_  A )
173172sselda 3432 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  w  e.  ( U  i^i  ( B [,] C ) ) )  ->  w  e.  A
)
174 elndif 3557 . . . . . . . . . . . . . . 15  |-  ( w  e.  A  ->  -.  w  e.  ( RR  \  A ) )
175173, 174syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  w  e.  ( U  i^i  ( B [,] C ) ) )  ->  -.  w  e.  ( RR  \  A ) )
176128ad3antrrr 736 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  ( U  i^i  V )  C_  ( RR  \  A ) )
177 inss1 3652 . . . . . . . . . . . . . . . . . 18  |-  ( U  i^i  ( B [,] C ) )  C_  U
178 simprl 764 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  w  e.  ( U  i^i  ( B [,] C ) ) )
179177, 178sseldi 3430 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  w  e.  U )
180 simplr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  (
( S  -  r
) (,) ( S  +  r ) ) 
C_  V )
18118ad3antrrr 736 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  w  e.  ( U  i^i  ( B [,] C ) ) )  ->  ( U  i^i  ( B [,] C ) )  C_  RR )
182 simpr 463 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  w  e.  ( U  i^i  ( B [,] C ) ) )  ->  w  e.  ( U  i^i  ( B [,] C ) ) )
183181, 182sseldd 3433 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  w  e.  ( U  i^i  ( B [,] C ) ) )  ->  w  e.  RR )
184183adantrr 723 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  w  e.  RR )
185 simprr 766 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  ( S  -  r )  <  w )
18648ad2antrr 732 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  S  e.  RR )
187 simpllr 769 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  r  e.  RR+ )
188187rpred 11341 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  r  e.  RR )
189186, 188readdcld 9670 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  ( S  +  r )  e.  RR )
190181adantrr 723 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  ( U  i^i  ( B [,] C ) )  C_  RR )
19130ad3antrrr 736 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  ( U  i^i  ( B [,] C ) )  =/=  (/) )
19241ad3antrrr 736 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  E. z  e.  RR  A. w  e.  ( U  i^i  ( B [,] C ) ) w  <_  z )
193 suprub 10570 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( U  i^i  ( B [,] C ) )  C_  RR  /\  ( U  i^i  ( B [,] C ) )  =/=  (/)  /\  E. z  e.  RR  A. w  e.  ( U  i^i  ( B [,] C ) ) w  <_  z )  /\  w  e.  ( U  i^i  ( B [,] C ) ) )  ->  w  <_  sup ( ( U  i^i  ( B [,] C ) ) ,  RR ,  <  ) )
194190, 191, 192, 178, 193syl31anc 1271 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  w  <_  sup ( ( U  i^i  ( B [,] C ) ) ,  RR ,  <  )
)
195194, 1syl6breqr 4443 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  w  <_  S )
196186, 187ltaddrpd 11371 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  S  <  ( S  +  r ) )
197184, 186, 189, 195, 196lelttrd 9793 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  w  <  ( S  +  r ) )
198165ad2antrr 732 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  ( S  -  r )  e.  RR )
199 rexr 9686 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( S  -  r )  e.  RR  ->  ( S  -  r )  e.  RR* )
200 rexr 9686 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( S  +  r )  e.  RR  ->  ( S  +  r )  e.  RR* )
201 elioo2 11677 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( S  -  r
)  e.  RR*  /\  ( S  +  r )  e.  RR* )  ->  (
w  e.  ( ( S  -  r ) (,) ( S  +  r ) )  <->  ( w  e.  RR  /\  ( S  -  r )  < 
w  /\  w  <  ( S  +  r ) ) ) )
202199, 200, 201syl2an 480 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( S  -  r
)  e.  RR  /\  ( S  +  r
)  e.  RR )  ->  ( w  e.  ( ( S  -  r ) (,) ( S  +  r )
)  <->  ( w  e.  RR  /\  ( S  -  r )  < 
w  /\  w  <  ( S  +  r ) ) ) )
203198, 189, 202syl2anc 667 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  (
w  e.  ( ( S  -  r ) (,) ( S  +  r ) )  <->  ( w  e.  RR  /\  ( S  -  r )  < 
w  /\  w  <  ( S  +  r ) ) ) )
204184, 185, 197, 203mpbir3and 1191 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  w  e.  ( ( S  -  r ) (,) ( S  +  r )
) )
205180, 204sseldd 3433 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  w  e.  V )
206179, 205elind 3618 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  w  e.  ( U  i^i  V
) )
207176, 206sseldd 3433 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  ( w  e.  ( U  i^i  ( B [,] C ) )  /\  ( S  -  r )  <  w
) )  ->  w  e.  ( RR  \  A
) )
208207expr 620 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  w  e.  ( U  i^i  ( B [,] C ) ) )  ->  ( ( S  -  r )  < 
w  ->  w  e.  ( RR  \  A ) ) )
209175, 208mtod 181 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  w  e.  ( U  i^i  ( B [,] C ) ) )  ->  -.  ( S  -  r )  < 
w )
210165ad2antrr 732 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  w  e.  ( U  i^i  ( B [,] C ) ) )  ->  ( S  -  r )  e.  RR )
211183, 210lenltd 9781 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  w  e.  ( U  i^i  ( B [,] C ) ) )  ->  ( w  <_ 
( S  -  r
)  <->  -.  ( S  -  r )  < 
w ) )
212209, 211mpbird 236 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( ( S  -  r ) (,) ( S  +  r )
)  C_  V )  /\  w  e.  ( U  i^i  ( B [,] C ) ) )  ->  w  <_  ( S  -  r )
)
213212ralrimiva 2802 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
( S  -  r
) (,) ( S  +  r ) ) 
C_  V )  ->  A. w  e.  ( U  i^i  ( B [,] C ) ) w  <_  ( S  -  r ) )
21418ad2antrr 732 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
( S  -  r
) (,) ( S  +  r ) ) 
C_  V )  -> 
( U  i^i  ( B [,] C ) ) 
C_  RR )
21530ad2antrr 732 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
( S  -  r
) (,) ( S  +  r ) ) 
C_  V )  -> 
( U  i^i  ( B [,] C ) )  =/=  (/) )
21641ad2antrr 732 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
( S  -  r
) (,) ( S  +  r ) ) 
C_  V )  ->  E. z  e.  RR  A. w  e.  ( U  i^i  ( B [,] C ) ) w  <_  z )
217165adantr 467 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
( S  -  r
) (,) ( S  +  r ) ) 
C_  V )  -> 
( S  -  r
)  e.  RR )
218 suprleub 10573 . . . . . . . . . . . 12  |-  ( ( ( ( U  i^i  ( B [,] C ) )  C_  RR  /\  ( U  i^i  ( B [,] C ) )  =/=  (/)  /\  E. z  e.  RR  A. w  e.  ( U  i^i  ( B [,] C ) ) w  <_  z )  /\  ( S  -  r
)  e.  RR )  ->  ( sup (
( U  i^i  ( B [,] C ) ) ,  RR ,  <  )  <_  ( S  -  r )  <->  A. w  e.  ( U  i^i  ( B [,] C ) ) w  <_  ( S  -  r ) ) )
219214, 215, 216, 217, 218syl31anc 1271 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
( S  -  r
) (,) ( S  +  r ) ) 
C_  V )  -> 
( sup ( ( U  i^i  ( B [,] C ) ) ,  RR ,  <  )  <_  ( S  -  r )  <->  A. w  e.  ( U  i^i  ( B [,] C ) ) w  <_  ( S  -  r ) ) )
220213, 219mpbird 236 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
( S  -  r
) (,) ( S  +  r ) ) 
C_  V )  ->  sup ( ( U  i^i  ( B [,] C ) ) ,  RR ,  <  )  <_  ( S  -  r ) )
2211, 220syl5eqbr 4436 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
( S  -  r
) (,) ( S  +  r ) ) 
C_  V )  ->  S  <_  ( S  -  r ) )
222221ex 436 . . . . . . . 8  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( (
( S  -  r
) (,) ( S  +  r ) ) 
C_  V  ->  S  <_  ( S  -  r
) ) )
223170, 222sylbid 219 . . . . . . 7  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( ( S ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  V  ->  S  <_  ( S  -  r ) ) )
224167, 223mtod 181 . . . . . 6  |-  ( (
ph  /\  r  e.  RR+ )  ->  -.  ( S ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  V )
225224nrexdv 2843 . . . . 5  |-  ( ph  ->  -.  E. r  e.  RR+  ( S ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) r )  C_  V )
226 reconnlem2.3 . . . . . 6  |-  ( ph  ->  V  e.  ( topGen ` 
ran  (,) ) )
227153mopni2 21508 . . . . . . . 8  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( *Met `  RR )  /\  V  e.  ( topGen `  ran  (,) )  /\  S  e.  V
)  ->  E. r  e.  RR+  ( S (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  V )
228102, 227mp3an1 1351 . . . . . . 7  |-  ( ( V  e.  ( topGen ` 
ran  (,) )  /\  S  e.  V )  ->  E. r  e.  RR+  ( S (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  V )
229228ex 436 . . . . . 6  |-  ( V  e.  ( topGen `  ran  (,) )  ->  ( S  e.  V  ->  E. r  e.  RR+  ( S (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  V )
)
230226, 229syl 17 . . . . 5  |-  ( ph  ->  ( S  e.  V  ->  E. r  e.  RR+  ( S ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  V )
)
231225, 230mtod 181 . . . 4  |-  ( ph  ->  -.  S  e.  V
)
232 ioran 493 . . . 4  |-  ( -.  ( S  e.  U  \/  S  e.  V
)  <->  ( -.  S  e.  U  /\  -.  S  e.  V ) )
233160, 231, 232sylanbrc 670 . . 3  |-  ( ph  ->  -.  ( S  e.  U  \/  S  e.  V ) )
234 elun 3574 . . 3  |-  ( S  e.  ( U  u.  V )  <->  ( S  e.  U  \/  S  e.  V ) )
235233, 234sylnibr 307 . 2  |-  ( ph  ->  -.  S  e.  ( U  u.  V ) )
236 elicc2 11699 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( S  e.  ( B [,] C )  <-> 
( S  e.  RR  /\  B  <_  S  /\  S  <_  C ) ) )
23721, 23, 236syl2anc 667 . . . . 5  |-  ( ph  ->  ( S  e.  ( B [,] C )  <-> 
( S  e.  RR  /\  B  <_  S  /\  S  <_  C ) ) )
23844, 65, 119, 237mpbir3and 1191 . . . 4  |-  ( ph  ->  S  e.  ( B [,] C ) )
23915, 238sseldd 3433 . . 3  |-  ( ph  ->  S  e.  A )
240 ssel 3426 . . 3  |-  ( A 
C_  ( U  u.  V )  ->  ( S  e.  A  ->  S  e.  ( U  u.  V ) ) )
241239, 240syl5com 31 . 2  |-  ( ph  ->  ( A  C_  ( U  u.  V )  ->  S  e.  ( U  u.  V ) ) )
242235, 241mtod 181 1  |-  ( ph  ->  -.  A  C_  ( U  u.  V )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887    =/= wne 2622   A.wral 2737   E.wrex 2738    \ cdif 3401    u. cun 3402    i^i cin 3403    C_ wss 3404   (/)c0 3731   class class class wbr 4402    X. cxp 4832   ran crn 4835    |` cres 4836    o. ccom 4838   ` cfv 5582  (class class class)co 6290   supcsup 7954   RRcr 9538    + caddc 9542   -oocmnf 9673   RR*cxr 9674    < clt 9675    <_ cle 9676    - cmin 9860    / cdiv 10269   2c2 10659   RR+crp 11302   (,)cioo 11635   [,]cicc 11638   abscabs 13297   topGenctg 15336   *Metcxmt 18955   ballcbl 18957   MetOpencmopn 18960   Topctop 19917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-er 7363  df-map 7474  df-en 7570  df-dom 7571  df-sdom 7572  df-sup 7956  df-inf 7957  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-icc 11642  df-seq 12214  df-exp 12273  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-topgen 15342  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-top 19921  df-bases 19922  df-topon 19923
This theorem is referenced by:  reconn  21846
  Copyright terms: Public domain W3C validator