MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reconnlem1 Structured version   Unicode version

Theorem reconnlem1 20372
Description: Lemma for reconn 20374. Connectedness in the reals-easy direction. (Contributed by Jeff Hankins, 13-Jul-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
reconnlem1  |-  ( ( ( A  C_  RR  /\  ( ( topGen `  ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  -> 
( X [,] Y
)  C_  A )

Proof of Theorem reconnlem1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simplr 754 . . . 4  |-  ( ( ( A  C_  RR  /\  ( ( topGen `  ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  -> 
( ( topGen `  ran  (,) )t  A )  e.  Con )
2 retopon 20311 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
32a1i 11 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( topGen `  ran  (,) )  e.  (TopOn `  RR )
)
4 simplll 757 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  A  C_  RR )
5 iooretop 20314 . . . . . . 7  |-  ( -oo (,) z )  e.  (
topGen `  ran  (,) )
65a1i 11 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( -oo (,) z )  e.  ( topGen `  ran  (,) ) )
7 iooretop 20314 . . . . . . 7  |-  ( z (,) +oo )  e.  ( topGen `  ran  (,) )
87a1i 11 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( z (,) +oo )  e.  ( topGen ` 
ran  (,) ) )
9 simplrl 759 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  X  e.  A )
104, 9sseldd 3350 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  X  e.  RR )
11 mnflt 11096 . . . . . . . . 9  |-  ( X  e.  RR  -> -oo  <  X )
1210, 11syl 16 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> -oo  <  X )
13 eldifn 3472 . . . . . . . . . . 11  |-  ( z  e.  ( ( X [,] Y )  \  A )  ->  -.  z  e.  A )
1413adantl 466 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  -.  z  e.  A
)
15 eleq1 2497 . . . . . . . . . . 11  |-  ( X  =  z  ->  ( X  e.  A  <->  z  e.  A ) )
169, 15syl5ibcom 220 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( X  =  z  ->  z  e.  A
) )
1714, 16mtod 177 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  -.  X  =  z
)
18 eldifi 3471 . . . . . . . . . . . . . 14  |-  ( z  e.  ( ( X [,] Y )  \  A )  ->  z  e.  ( X [,] Y
) )
1918adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
z  e.  ( X [,] Y ) )
20 simplrr 760 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  Y  e.  A )
214, 20sseldd 3350 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  Y  e.  RR )
22 elicc2 11352 . . . . . . . . . . . . . 14  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( z  e.  ( X [,] Y )  <-> 
( z  e.  RR  /\  X  <_  z  /\  z  <_  Y ) ) )
2310, 21, 22syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( z  e.  ( X [,] Y )  <-> 
( z  e.  RR  /\  X  <_  z  /\  z  <_  Y ) ) )
2419, 23mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( z  e.  RR  /\  X  <_  z  /\  z  <_  Y ) )
2524simp2d 1001 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  X  <_  z )
2624simp1d 1000 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
z  e.  RR )
2710, 26leloed 9509 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( X  <_  z  <->  ( X  <  z  \/  X  =  z ) ) )
2825, 27mpbid 210 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( X  <  z  \/  X  =  z
) )
2928ord 377 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( -.  X  < 
z  ->  X  =  z ) )
3017, 29mt3d 125 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  X  <  z )
31 mnfxr 11086 . . . . . . . . 9  |- -oo  e.  RR*
3226rexrd 9425 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
z  e.  RR* )
33 elioo2 11333 . . . . . . . . 9  |-  ( ( -oo  e.  RR*  /\  z  e.  RR* )  ->  ( X  e.  ( -oo (,) z )  <->  ( X  e.  RR  /\ -oo  <  X  /\  X  <  z
) ) )
3431, 32, 33sylancr 663 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( X  e.  ( -oo (,) z )  <-> 
( X  e.  RR  /\ -oo  <  X  /\  X  <  z ) ) )
3510, 12, 30, 34mpbir3and 1171 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  X  e.  ( -oo (,) z ) )
36 inelcm 3726 . . . . . . 7  |-  ( ( X  e.  ( -oo (,) z )  /\  X  e.  A )  ->  (
( -oo (,) z )  i^i  A )  =/=  (/) )
3735, 9, 36syl2anc 661 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( ( -oo (,) z )  i^i  A
)  =/=  (/) )
38 eleq1 2497 . . . . . . . . . . 11  |-  ( z  =  Y  ->  (
z  e.  A  <->  Y  e.  A ) )
3920, 38syl5ibrcom 222 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( z  =  Y  ->  z  e.  A
) )
4014, 39mtod 177 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  -.  z  =  Y
)
4124simp3d 1002 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
z  <_  Y )
4226, 21leloed 9509 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( z  <_  Y  <->  ( z  <  Y  \/  z  =  Y )
) )
4341, 42mpbid 210 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( z  <  Y  \/  z  =  Y
) )
4443ord 377 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( -.  z  < 
Y  ->  z  =  Y ) )
4540, 44mt3d 125 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
z  <  Y )
46 ltpnf 11094 . . . . . . . . 9  |-  ( Y  e.  RR  ->  Y  < +oo )
4721, 46syl 16 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  Y  < +oo )
48 pnfxr 11084 . . . . . . . . 9  |- +oo  e.  RR*
49 elioo2 11333 . . . . . . . . 9  |-  ( ( z  e.  RR*  /\ +oo  e.  RR* )  ->  ( Y  e.  ( z (,) +oo )  <->  ( Y  e.  RR  /\  z  < 
Y  /\  Y  < +oo ) ) )
5032, 48, 49sylancl 662 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( Y  e.  ( z (,) +oo )  <->  ( Y  e.  RR  /\  z  <  Y  /\  Y  < +oo ) ) )
5121, 45, 47, 50mpbir3and 1171 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  Y  e.  ( z (,) +oo ) )
52 inelcm 3726 . . . . . . 7  |-  ( ( Y  e.  ( z (,) +oo )  /\  Y  e.  A )  ->  ( ( z (,) +oo )  i^i  A )  =/=  (/) )
5351, 20, 52syl2anc 661 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( ( z (,) +oo )  i^i  A )  =/=  (/) )
54 inss1 3563 . . . . . . 7  |-  ( ( ( -oo (,) z
)  i^i  ( z (,) +oo ) )  i^i 
A )  C_  (
( -oo (,) z )  i^i  ( z (,) +oo ) )
5532, 31jctil 537 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( -oo  e.  RR*  /\  z  e.  RR* ) )
5632, 48jctir 538 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( z  e.  RR*  /\ +oo  e.  RR* ) )
5726leidd 9898 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
z  <_  z )
58 ioodisj 11407 . . . . . . . 8  |-  ( ( ( ( -oo  e.  RR* 
/\  z  e.  RR* )  /\  ( z  e. 
RR*  /\ +oo  e.  RR* ) )  /\  z  <_  z )  ->  (
( -oo (,) z )  i^i  ( z (,) +oo ) )  =  (/) )
5955, 56, 57, 58syl21anc 1217 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( ( -oo (,) z )  i^i  (
z (,) +oo )
)  =  (/) )
60 sseq0 3662 . . . . . . 7  |-  ( ( ( ( ( -oo (,) z )  i^i  (
z (,) +oo )
)  i^i  A )  C_  ( ( -oo (,) z )  i^i  (
z (,) +oo )
)  /\  ( ( -oo (,) z )  i^i  ( z (,) +oo ) )  =  (/) )  ->  ( ( ( -oo (,) z )  i^i  ( z (,) +oo ) )  i^i  A
)  =  (/) )
6154, 59, 60sylancr 663 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( ( ( -oo (,) z )  i^i  (
z (,) +oo )
)  i^i  A )  =  (/) )
6231a1i 11 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> -oo  e.  RR* )
6348a1i 11 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> +oo  e.  RR* )
64 mnflt 11096 . . . . . . . . . . 11  |-  ( z  e.  RR  -> -oo  <  z )
6526, 64syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> -oo  <  z )
66 ltpnf 11094 . . . . . . . . . . 11  |-  ( z  e.  RR  ->  z  < +oo )
6726, 66syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
z  < +oo )
68 ioojoin 11408 . . . . . . . . . 10  |-  ( ( ( -oo  e.  RR*  /\  z  e.  RR*  /\ +oo  e.  RR* )  /\  ( -oo  <  z  /\  z  < +oo ) )  -> 
( ( ( -oo (,) z )  u.  {
z } )  u.  ( z (,) +oo ) )  =  ( -oo (,) +oo )
)
6962, 32, 63, 65, 67, 68syl32anc 1226 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( ( ( -oo (,) z )  u.  {
z } )  u.  ( z (,) +oo ) )  =  ( -oo (,) +oo )
)
70 unass 3506 . . . . . . . . . 10  |-  ( ( ( -oo (,) z
)  u.  { z } )  u.  (
z (,) +oo )
)  =  ( ( -oo (,) z )  u.  ( { z }  u.  ( z (,) +oo ) ) )
71 un12 3507 . . . . . . . . . 10  |-  ( ( -oo (,) z )  u.  ( { z }  u.  ( z (,) +oo ) ) )  =  ( { z }  u.  (
( -oo (,) z )  u.  ( z (,) +oo ) ) )
7270, 71eqtri 2457 . . . . . . . . 9  |-  ( ( ( -oo (,) z
)  u.  { z } )  u.  (
z (,) +oo )
)  =  ( { z }  u.  (
( -oo (,) z )  u.  ( z (,) +oo ) ) )
73 ioomax 11362 . . . . . . . . 9  |-  ( -oo (,) +oo )  =  RR
7469, 72, 733eqtr3g 2492 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( { z }  u.  ( ( -oo (,) z )  u.  (
z (,) +oo )
) )  =  RR )
754, 74sseqtr4d 3386 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  A  C_  ( { z }  u.  ( ( -oo (,) z )  u.  ( z (,) +oo ) ) ) )
76 disjsn 3929 . . . . . . . . 9  |-  ( ( A  i^i  { z } )  =  (/)  <->  -.  z  e.  A )
7714, 76sylibr 212 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( A  i^i  {
z } )  =  (/) )
78 disjssun 3729 . . . . . . . 8  |-  ( ( A  i^i  { z } )  =  (/)  ->  ( A  C_  ( { z }  u.  ( ( -oo (,) z )  u.  (
z (,) +oo )
) )  <->  A  C_  (
( -oo (,) z )  u.  ( z (,) +oo ) ) ) )
7977, 78syl 16 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( A  C_  ( { z }  u.  ( ( -oo (,) z )  u.  (
z (,) +oo )
) )  <->  A  C_  (
( -oo (,) z )  u.  ( z (,) +oo ) ) ) )
8075, 79mpbid 210 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  A  C_  ( ( -oo (,) z )  u.  (
z (,) +oo )
) )
813, 4, 6, 8, 37, 53, 61, 80nconsubb 18996 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  -.  ( ( topGen `  ran  (,) )t  A )  e.  Con )
8281ex 434 . . . 4  |-  ( ( ( A  C_  RR  /\  ( ( topGen `  ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  -> 
( z  e.  ( ( X [,] Y
)  \  A )  ->  -.  ( ( topGen ` 
ran  (,) )t  A )  e.  Con ) )
831, 82mt2d 117 . . 3  |-  ( ( ( A  C_  RR  /\  ( ( topGen `  ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  ->  -.  z  e.  (
( X [,] Y
)  \  A )
)
8483eq0rdv 3665 . 2  |-  ( ( ( A  C_  RR  /\  ( ( topGen `  ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  -> 
( ( X [,] Y )  \  A
)  =  (/) )
85 ssdif0 3730 . 2  |-  ( ( X [,] Y ) 
C_  A  <->  ( ( X [,] Y )  \  A )  =  (/) )
8684, 85sylibr 212 1  |-  ( ( ( A  C_  RR  /\  ( ( topGen `  ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  -> 
( X [,] Y
)  C_  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2600    \ cdif 3318    u. cun 3319    i^i cin 3320    C_ wss 3321   (/)c0 3630   {csn 3870   class class class wbr 4285   ran crn 4833   ` cfv 5411  (class class class)co 6086   RRcr 9273   +oocpnf 9407   -oocmnf 9408   RR*cxr 9409    < clt 9410    <_ cle 9411   (,)cioo 11292   [,]cicc 11295   ↾t crest 14351   topGenctg 14368  TopOnctopon 18468   Conccon 18984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2418  ax-rep 4396  ax-sep 4406  ax-nul 4414  ax-pow 4463  ax-pr 4524  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2714  df-rex 2715  df-reu 2716  df-rmo 2717  df-rab 2718  df-v 2968  df-sbc 3180  df-csb 3282  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3631  df-if 3785  df-pw 3855  df-sn 3871  df-pr 3873  df-tp 3875  df-op 3877  df-uni 4085  df-int 4122  df-iun 4166  df-br 4286  df-opab 4344  df-mpt 4345  df-tr 4379  df-eprel 4624  df-id 4628  df-po 4633  df-so 4634  df-fr 4671  df-we 4673  df-ord 4714  df-on 4715  df-lim 4716  df-suc 4717  df-xp 4838  df-rel 4839  df-cnv 4840  df-co 4841  df-dm 4842  df-rn 4843  df-res 4844  df-ima 4845  df-iota 5374  df-fun 5413  df-fn 5414  df-f 5415  df-f1 5416  df-fo 5417  df-f1o 5418  df-fv 5419  df-riota 6045  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-oadd 6916  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fi 7653  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-n0 10572  df-z 10639  df-uz 10854  df-q 10946  df-ioo 11296  df-ico 11298  df-icc 11299  df-rest 14353  df-topgen 14374  df-top 18472  df-bases 18474  df-topon 18475  df-cld 18592  df-con 18985
This theorem is referenced by:  reconn  20374
  Copyright terms: Public domain W3C validator