MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reconnlem1 Structured version   Unicode version

Theorem reconnlem1 21158
Description: Lemma for reconn 21160. Connectedness in the reals-easy direction. (Contributed by Jeff Hankins, 13-Jul-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
reconnlem1  |-  ( ( ( A  C_  RR  /\  ( ( topGen `  ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  -> 
( X [,] Y
)  C_  A )

Proof of Theorem reconnlem1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simplr 754 . . . 4  |-  ( ( ( A  C_  RR  /\  ( ( topGen `  ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  -> 
( ( topGen `  ran  (,) )t  A )  e.  Con )
2 retopon 21097 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
32a1i 11 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( topGen `  ran  (,) )  e.  (TopOn `  RR )
)
4 simplll 757 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  A  C_  RR )
5 iooretop 21100 . . . . . . 7  |-  ( -oo (,) z )  e.  (
topGen `  ran  (,) )
65a1i 11 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( -oo (,) z )  e.  ( topGen `  ran  (,) ) )
7 iooretop 21100 . . . . . . 7  |-  ( z (,) +oo )  e.  ( topGen `  ran  (,) )
87a1i 11 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( z (,) +oo )  e.  ( topGen ` 
ran  (,) ) )
9 simplrl 759 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  X  e.  A )
104, 9sseldd 3505 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  X  e.  RR )
11 mnflt 11334 . . . . . . . . 9  |-  ( X  e.  RR  -> -oo  <  X )
1210, 11syl 16 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> -oo  <  X )
13 eldifn 3627 . . . . . . . . . . 11  |-  ( z  e.  ( ( X [,] Y )  \  A )  ->  -.  z  e.  A )
1413adantl 466 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  -.  z  e.  A
)
15 eleq1 2539 . . . . . . . . . . 11  |-  ( X  =  z  ->  ( X  e.  A  <->  z  e.  A ) )
169, 15syl5ibcom 220 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( X  =  z  ->  z  e.  A
) )
1714, 16mtod 177 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  -.  X  =  z
)
18 eldifi 3626 . . . . . . . . . . . . . 14  |-  ( z  e.  ( ( X [,] Y )  \  A )  ->  z  e.  ( X [,] Y
) )
1918adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
z  e.  ( X [,] Y ) )
20 simplrr 760 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  Y  e.  A )
214, 20sseldd 3505 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  Y  e.  RR )
22 elicc2 11590 . . . . . . . . . . . . . 14  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( z  e.  ( X [,] Y )  <-> 
( z  e.  RR  /\  X  <_  z  /\  z  <_  Y ) ) )
2310, 21, 22syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( z  e.  ( X [,] Y )  <-> 
( z  e.  RR  /\  X  <_  z  /\  z  <_  Y ) ) )
2419, 23mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( z  e.  RR  /\  X  <_  z  /\  z  <_  Y ) )
2524simp2d 1009 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  X  <_  z )
2624simp1d 1008 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
z  e.  RR )
2710, 26leloed 9728 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( X  <_  z  <->  ( X  <  z  \/  X  =  z ) ) )
2825, 27mpbid 210 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( X  <  z  \/  X  =  z
) )
2928ord 377 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( -.  X  < 
z  ->  X  =  z ) )
3017, 29mt3d 125 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  X  <  z )
31 mnfxr 11324 . . . . . . . . 9  |- -oo  e.  RR*
3226rexrd 9644 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
z  e.  RR* )
33 elioo2 11571 . . . . . . . . 9  |-  ( ( -oo  e.  RR*  /\  z  e.  RR* )  ->  ( X  e.  ( -oo (,) z )  <->  ( X  e.  RR  /\ -oo  <  X  /\  X  <  z
) ) )
3431, 32, 33sylancr 663 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( X  e.  ( -oo (,) z )  <-> 
( X  e.  RR  /\ -oo  <  X  /\  X  <  z ) ) )
3510, 12, 30, 34mpbir3and 1179 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  X  e.  ( -oo (,) z ) )
36 inelcm 3881 . . . . . . 7  |-  ( ( X  e.  ( -oo (,) z )  /\  X  e.  A )  ->  (
( -oo (,) z )  i^i  A )  =/=  (/) )
3735, 9, 36syl2anc 661 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( ( -oo (,) z )  i^i  A
)  =/=  (/) )
38 eleq1 2539 . . . . . . . . . . 11  |-  ( z  =  Y  ->  (
z  e.  A  <->  Y  e.  A ) )
3920, 38syl5ibrcom 222 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( z  =  Y  ->  z  e.  A
) )
4014, 39mtod 177 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  -.  z  =  Y
)
4124simp3d 1010 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
z  <_  Y )
4226, 21leloed 9728 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( z  <_  Y  <->  ( z  <  Y  \/  z  =  Y )
) )
4341, 42mpbid 210 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( z  <  Y  \/  z  =  Y
) )
4443ord 377 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( -.  z  < 
Y  ->  z  =  Y ) )
4540, 44mt3d 125 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
z  <  Y )
46 ltpnf 11332 . . . . . . . . 9  |-  ( Y  e.  RR  ->  Y  < +oo )
4721, 46syl 16 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  Y  < +oo )
48 pnfxr 11322 . . . . . . . . 9  |- +oo  e.  RR*
49 elioo2 11571 . . . . . . . . 9  |-  ( ( z  e.  RR*  /\ +oo  e.  RR* )  ->  ( Y  e.  ( z (,) +oo )  <->  ( Y  e.  RR  /\  z  < 
Y  /\  Y  < +oo ) ) )
5032, 48, 49sylancl 662 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( Y  e.  ( z (,) +oo )  <->  ( Y  e.  RR  /\  z  <  Y  /\  Y  < +oo ) ) )
5121, 45, 47, 50mpbir3and 1179 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  Y  e.  ( z (,) +oo ) )
52 inelcm 3881 . . . . . . 7  |-  ( ( Y  e.  ( z (,) +oo )  /\  Y  e.  A )  ->  ( ( z (,) +oo )  i^i  A )  =/=  (/) )
5351, 20, 52syl2anc 661 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( ( z (,) +oo )  i^i  A )  =/=  (/) )
54 inss1 3718 . . . . . . 7  |-  ( ( ( -oo (,) z
)  i^i  ( z (,) +oo ) )  i^i 
A )  C_  (
( -oo (,) z )  i^i  ( z (,) +oo ) )
5532, 31jctil 537 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( -oo  e.  RR*  /\  z  e.  RR* ) )
5632, 48jctir 538 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( z  e.  RR*  /\ +oo  e.  RR* ) )
5726leidd 10120 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
z  <_  z )
58 ioodisj 11651 . . . . . . . 8  |-  ( ( ( ( -oo  e.  RR* 
/\  z  e.  RR* )  /\  ( z  e. 
RR*  /\ +oo  e.  RR* ) )  /\  z  <_  z )  ->  (
( -oo (,) z )  i^i  ( z (,) +oo ) )  =  (/) )
5955, 56, 57, 58syl21anc 1227 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( ( -oo (,) z )  i^i  (
z (,) +oo )
)  =  (/) )
60 sseq0 3817 . . . . . . 7  |-  ( ( ( ( ( -oo (,) z )  i^i  (
z (,) +oo )
)  i^i  A )  C_  ( ( -oo (,) z )  i^i  (
z (,) +oo )
)  /\  ( ( -oo (,) z )  i^i  ( z (,) +oo ) )  =  (/) )  ->  ( ( ( -oo (,) z )  i^i  ( z (,) +oo ) )  i^i  A
)  =  (/) )
6154, 59, 60sylancr 663 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( ( ( -oo (,) z )  i^i  (
z (,) +oo )
)  i^i  A )  =  (/) )
6231a1i 11 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> -oo  e.  RR* )
6348a1i 11 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> +oo  e.  RR* )
64 mnflt 11334 . . . . . . . . . . 11  |-  ( z  e.  RR  -> -oo  <  z )
6526, 64syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> -oo  <  z )
66 ltpnf 11332 . . . . . . . . . . 11  |-  ( z  e.  RR  ->  z  < +oo )
6726, 66syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
z  < +oo )
68 ioojoin 11652 . . . . . . . . . 10  |-  ( ( ( -oo  e.  RR*  /\  z  e.  RR*  /\ +oo  e.  RR* )  /\  ( -oo  <  z  /\  z  < +oo ) )  -> 
( ( ( -oo (,) z )  u.  {
z } )  u.  ( z (,) +oo ) )  =  ( -oo (,) +oo )
)
6962, 32, 63, 65, 67, 68syl32anc 1236 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( ( ( -oo (,) z )  u.  {
z } )  u.  ( z (,) +oo ) )  =  ( -oo (,) +oo )
)
70 unass 3661 . . . . . . . . . 10  |-  ( ( ( -oo (,) z
)  u.  { z } )  u.  (
z (,) +oo )
)  =  ( ( -oo (,) z )  u.  ( { z }  u.  ( z (,) +oo ) ) )
71 un12 3662 . . . . . . . . . 10  |-  ( ( -oo (,) z )  u.  ( { z }  u.  ( z (,) +oo ) ) )  =  ( { z }  u.  (
( -oo (,) z )  u.  ( z (,) +oo ) ) )
7270, 71eqtri 2496 . . . . . . . . 9  |-  ( ( ( -oo (,) z
)  u.  { z } )  u.  (
z (,) +oo )
)  =  ( { z }  u.  (
( -oo (,) z )  u.  ( z (,) +oo ) ) )
73 ioomax 11600 . . . . . . . . 9  |-  ( -oo (,) +oo )  =  RR
7469, 72, 733eqtr3g 2531 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( { z }  u.  ( ( -oo (,) z )  u.  (
z (,) +oo )
) )  =  RR )
754, 74sseqtr4d 3541 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  A  C_  ( { z }  u.  ( ( -oo (,) z )  u.  ( z (,) +oo ) ) ) )
76 disjsn 4088 . . . . . . . . 9  |-  ( ( A  i^i  { z } )  =  (/)  <->  -.  z  e.  A )
7714, 76sylibr 212 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( A  i^i  {
z } )  =  (/) )
78 disjssun 3884 . . . . . . . 8  |-  ( ( A  i^i  { z } )  =  (/)  ->  ( A  C_  ( { z }  u.  ( ( -oo (,) z )  u.  (
z (,) +oo )
) )  <->  A  C_  (
( -oo (,) z )  u.  ( z (,) +oo ) ) ) )
7977, 78syl 16 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  -> 
( A  C_  ( { z }  u.  ( ( -oo (,) z )  u.  (
z (,) +oo )
) )  <->  A  C_  (
( -oo (,) z )  u.  ( z (,) +oo ) ) ) )
8075, 79mpbid 210 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  A  C_  ( ( -oo (,) z )  u.  (
z (,) +oo )
) )
813, 4, 6, 8, 37, 53, 61, 80nconsubb 19730 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  ( ( topGen ` 
ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  /\  z  e.  ( ( X [,] Y )  \  A ) )  ->  -.  ( ( topGen `  ran  (,) )t  A )  e.  Con )
8281ex 434 . . . 4  |-  ( ( ( A  C_  RR  /\  ( ( topGen `  ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  -> 
( z  e.  ( ( X [,] Y
)  \  A )  ->  -.  ( ( topGen ` 
ran  (,) )t  A )  e.  Con ) )
831, 82mt2d 117 . . 3  |-  ( ( ( A  C_  RR  /\  ( ( topGen `  ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  ->  -.  z  e.  (
( X [,] Y
)  \  A )
)
8483eq0rdv 3820 . 2  |-  ( ( ( A  C_  RR  /\  ( ( topGen `  ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  -> 
( ( X [,] Y )  \  A
)  =  (/) )
85 ssdif0 3885 . 2  |-  ( ( X [,] Y ) 
C_  A  <->  ( ( X [,] Y )  \  A )  =  (/) )
8684, 85sylibr 212 1  |-  ( ( ( A  C_  RR  /\  ( ( topGen `  ran  (,) )t  A )  e.  Con )  /\  ( X  e.  A  /\  Y  e.  A ) )  -> 
( X [,] Y
)  C_  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   {csn 4027   class class class wbr 4447   ran crn 5000   ` cfv 5588  (class class class)co 6285   RRcr 9492   +oocpnf 9626   -oocmnf 9627   RR*cxr 9628    < clt 9629    <_ cle 9630   (,)cioo 11530   [,]cicc 11533   ↾t crest 14679   topGenctg 14696  TopOnctopon 19202   Conccon 19718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570  ax-pre-sup 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7043  df-rdg 7077  df-oadd 7135  df-er 7312  df-en 7518  df-dom 7519  df-sdom 7520  df-fin 7521  df-fi 7872  df-sup 7902  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-div 10208  df-nn 10538  df-n0 10797  df-z 10866  df-uz 11084  df-q 11184  df-ioo 11534  df-ico 11536  df-icc 11537  df-rest 14681  df-topgen 14702  df-top 19206  df-bases 19208  df-topon 19209  df-cld 19326  df-con 19719
This theorem is referenced by:  reconn  21160
  Copyright terms: Public domain W3C validator