MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recncf Structured version   Unicode version

Theorem recncf 21276
Description: Real part is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
Assertion
Ref Expression
recncf  |-  Re  e.  ( CC -cn-> RR )

Proof of Theorem recncf
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ref 12921 . 2  |-  Re : CC
--> RR
2 recn2 13399 . . 3  |-  ( ( x  e.  CC  /\  y  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  CC  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( Re `  w
)  -  ( Re
`  x ) ) )  <  y ) )
32rgen2 2866 . 2  |-  A. x  e.  CC  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  CC  (
( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( Re `  w
)  -  ( Re
`  x ) ) )  <  y )
4 ssid 3506 . . 3  |-  CC  C_  CC
5 ax-resscn 9549 . . 3  |-  RR  C_  CC
6 elcncf2 21264 . . 3  |-  ( ( CC  C_  CC  /\  RR  C_  CC )  ->  (
Re  e.  ( CC
-cn-> RR )  <->  ( Re : CC --> RR  /\  A. x  e.  CC  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  CC  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( Re `  w
)  -  ( Re
`  x ) ) )  <  y ) ) ) )
74, 5, 6mp2an 672 . 2  |-  ( Re  e.  ( CC -cn-> RR )  <->  ( Re : CC
--> RR  /\  A. x  e.  CC  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  CC  (
( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( Re `  w
)  -  ( Re
`  x ) ) )  <  y ) ) )
81, 3, 7mpbir2an 918 1  |-  Re  e.  ( CC -cn-> RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1802   A.wral 2791   E.wrex 2792    C_ wss 3459   class class class wbr 4434   -->wf 5571   ` cfv 5575  (class class class)co 6278   CCcc 9490   RRcr 9491    < clt 9628    - cmin 9807   RR+crp 11226   Recre 12906   abscabs 13043   -cn->ccncf 21250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4555  ax-nul 4563  ax-pow 4612  ax-pr 4673  ax-un 6574  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3419  df-dif 3462  df-un 3464  df-in 3466  df-ss 3473  df-pss 3475  df-nul 3769  df-if 3924  df-pw 3996  df-sn 4012  df-pr 4014  df-tp 4016  df-op 4018  df-uni 4232  df-iun 4314  df-br 4435  df-opab 4493  df-mpt 4494  df-tr 4528  df-eprel 4778  df-id 4782  df-po 4787  df-so 4788  df-fr 4825  df-we 4827  df-ord 4868  df-on 4869  df-lim 4870  df-suc 4871  df-xp 4992  df-rel 4993  df-cnv 4994  df-co 4995  df-dm 4996  df-rn 4997  df-res 4998  df-ima 4999  df-iota 5538  df-fun 5577  df-fn 5578  df-f 5579  df-f1 5580  df-fo 5581  df-f1o 5582  df-fv 5583  df-riota 6239  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6683  df-2nd 6783  df-recs 7041  df-rdg 7075  df-er 7310  df-map 7421  df-en 7516  df-dom 7517  df-sdom 7518  df-sup 7900  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9809  df-neg 9810  df-div 10210  df-nn 10540  df-2 10597  df-3 10598  df-n0 10799  df-z 10868  df-uz 11088  df-rp 11227  df-seq 12084  df-exp 12143  df-cj 12908  df-re 12909  df-im 12910  df-sqrt 13044  df-abs 13045  df-cncf 21252
This theorem is referenced by:  cnrehmeo  21323  cncombf  21935  cnmbf  21936  dvlip  22264  mbfresfi  30033  ftc1anclem8  30069
  Copyright terms: Public domain W3C validator