MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recmulnq Unicode version

Theorem recmulnq 8797
Description: Relationship between reciprocal and multiplication on positive fractions. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
recmulnq  |-  ( A  e.  Q.  ->  (
( *Q `  A
)  =  B  <->  ( A  .Q  B )  =  1Q ) )

Proof of Theorem recmulnq
Dummy variables  x  y  s  r  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 5701 . . . 4  |-  ( *Q
`  A )  e. 
_V
21a1i 11 . . 3  |-  ( A  e.  Q.  ->  ( *Q `  A )  e. 
_V )
3 eleq1 2464 . . 3  |-  ( ( *Q `  A )  =  B  ->  (
( *Q `  A
)  e.  _V  <->  B  e.  _V ) )
42, 3syl5ibcom 212 . 2  |-  ( A  e.  Q.  ->  (
( *Q `  A
)  =  B  ->  B  e.  _V )
)
5 id 20 . . . . . . 7  |-  ( ( A  .Q  B )  =  1Q  ->  ( A  .Q  B )  =  1Q )
6 1nq 8761 . . . . . . 7  |-  1Q  e.  Q.
75, 6syl6eqel 2492 . . . . . 6  |-  ( ( A  .Q  B )  =  1Q  ->  ( A  .Q  B )  e. 
Q. )
8 mulnqf 8782 . . . . . . . 8  |-  .Q  :
( Q.  X.  Q. )
--> Q.
98fdmi 5555 . . . . . . 7  |-  dom  .Q  =  ( Q.  X.  Q. )
10 0nnq 8757 . . . . . . 7  |-  -.  (/)  e.  Q.
119, 10ndmovrcl 6192 . . . . . 6  |-  ( ( A  .Q  B )  e.  Q.  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
127, 11syl 16 . . . . 5  |-  ( ( A  .Q  B )  =  1Q  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
1312simprd 450 . . . 4  |-  ( ( A  .Q  B )  =  1Q  ->  B  e.  Q. )
14 elex 2924 . . . 4  |-  ( B  e.  Q.  ->  B  e.  _V )
1513, 14syl 16 . . 3  |-  ( ( A  .Q  B )  =  1Q  ->  B  e.  _V )
1615a1i 11 . 2  |-  ( A  e.  Q.  ->  (
( A  .Q  B
)  =  1Q  ->  B  e.  _V ) )
17 oveq1 6047 . . . . 5  |-  ( x  =  A  ->  (
x  .Q  y )  =  ( A  .Q  y ) )
1817eqeq1d 2412 . . . 4  |-  ( x  =  A  ->  (
( x  .Q  y
)  =  1Q  <->  ( A  .Q  y )  =  1Q ) )
19 oveq2 6048 . . . . 5  |-  ( y  =  B  ->  ( A  .Q  y )  =  ( A  .Q  B
) )
2019eqeq1d 2412 . . . 4  |-  ( y  =  B  ->  (
( A  .Q  y
)  =  1Q  <->  ( A  .Q  B )  =  1Q ) )
21 nqerid 8766 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  ( /Q `  x )  =  x )
22 relxp 4942 . . . . . . . . . . . 12  |-  Rel  ( N.  X.  N. )
23 elpqn 8758 . . . . . . . . . . . 12  |-  ( x  e.  Q.  ->  x  e.  ( N.  X.  N. ) )
24 1st2nd 6352 . . . . . . . . . . . 12  |-  ( ( Rel  ( N.  X.  N. )  /\  x  e.  ( N.  X.  N. ) )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
2522, 23, 24sylancr 645 . . . . . . . . . . 11  |-  ( x  e.  Q.  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
2625fveq2d 5691 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  ( /Q `  x )  =  ( /Q `  <. ( 1st `  x ) ,  ( 2nd `  x
) >. ) )
2721, 26eqtr3d 2438 . . . . . . . . 9  |-  ( x  e.  Q.  ->  x  =  ( /Q `  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
)
2827oveq1d 6055 . . . . . . . 8  |-  ( x  e.  Q.  ->  (
x  .Q  ( /Q
`  <. ( 2nd `  x
) ,  ( 1st `  x ) >. )
)  =  ( ( /Q `  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )  .Q  ( /Q `  <. ( 2nd `  x
) ,  ( 1st `  x ) >. )
) )
29 mulerpq 8790 . . . . . . . 8  |-  ( ( /Q `  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )  .Q  ( /Q `  <. ( 2nd `  x
) ,  ( 1st `  x ) >. )
)  =  ( /Q
`  ( <. ( 1st `  x ) ,  ( 2nd `  x
) >.  .pQ  <. ( 2nd `  x ) ,  ( 1st `  x )
>. ) )
3028, 29syl6eq 2452 . . . . . . 7  |-  ( x  e.  Q.  ->  (
x  .Q  ( /Q
`  <. ( 2nd `  x
) ,  ( 1st `  x ) >. )
)  =  ( /Q
`  ( <. ( 1st `  x ) ,  ( 2nd `  x
) >.  .pQ  <. ( 2nd `  x ) ,  ( 1st `  x )
>. ) ) )
31 xp1st 6335 . . . . . . . . . . 11  |-  ( x  e.  ( N.  X.  N. )  ->  ( 1st `  x )  e.  N. )
3223, 31syl 16 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  ( 1st `  x )  e. 
N. )
33 xp2nd 6336 . . . . . . . . . . 11  |-  ( x  e.  ( N.  X.  N. )  ->  ( 2nd `  x )  e.  N. )
3423, 33syl 16 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  ( 2nd `  x )  e. 
N. )
35 mulpipq 8773 . . . . . . . . . 10  |-  ( ( ( ( 1st `  x
)  e.  N.  /\  ( 2nd `  x )  e.  N. )  /\  ( ( 2nd `  x
)  e.  N.  /\  ( 1st `  x )  e.  N. ) )  ->  ( <. ( 1st `  x ) ,  ( 2nd `  x
) >.  .pQ  <. ( 2nd `  x ) ,  ( 1st `  x )
>. )  =  <. ( ( 1st `  x
)  .N  ( 2nd `  x ) ) ,  ( ( 2nd `  x
)  .N  ( 1st `  x ) ) >.
)
3632, 34, 34, 32, 35syl22anc 1185 . . . . . . . . 9  |-  ( x  e.  Q.  ->  ( <. ( 1st `  x
) ,  ( 2nd `  x ) >.  .pQ  <. ( 2nd `  x ) ,  ( 1st `  x
) >. )  =  <. ( ( 1st `  x
)  .N  ( 2nd `  x ) ) ,  ( ( 2nd `  x
)  .N  ( 1st `  x ) ) >.
)
37 mulcompi 8729 . . . . . . . . . 10  |-  ( ( 2nd `  x )  .N  ( 1st `  x
) )  =  ( ( 1st `  x
)  .N  ( 2nd `  x ) )
3837opeq2i 3948 . . . . . . . . 9  |-  <. (
( 1st `  x
)  .N  ( 2nd `  x ) ) ,  ( ( 2nd `  x
)  .N  ( 1st `  x ) ) >.  =  <. ( ( 1st `  x )  .N  ( 2nd `  x ) ) ,  ( ( 1st `  x )  .N  ( 2nd `  x ) )
>.
3936, 38syl6eq 2452 . . . . . . . 8  |-  ( x  e.  Q.  ->  ( <. ( 1st `  x
) ,  ( 2nd `  x ) >.  .pQ  <. ( 2nd `  x ) ,  ( 1st `  x
) >. )  =  <. ( ( 1st `  x
)  .N  ( 2nd `  x ) ) ,  ( ( 1st `  x
)  .N  ( 2nd `  x ) ) >.
)
4039fveq2d 5691 . . . . . . 7  |-  ( x  e.  Q.  ->  ( /Q `  ( <. ( 1st `  x ) ,  ( 2nd `  x
) >.  .pQ  <. ( 2nd `  x ) ,  ( 1st `  x )
>. ) )  =  ( /Q `  <. (
( 1st `  x
)  .N  ( 2nd `  x ) ) ,  ( ( 1st `  x
)  .N  ( 2nd `  x ) ) >.
) )
41 nqerid 8766 . . . . . . . . 9  |-  ( 1Q  e.  Q.  ->  ( /Q `  1Q )  =  1Q )
426, 41ax-mp 8 . . . . . . . 8  |-  ( /Q
`  1Q )  =  1Q
43 mulclpi 8726 . . . . . . . . . . 11  |-  ( ( ( 1st `  x
)  e.  N.  /\  ( 2nd `  x )  e.  N. )  -> 
( ( 1st `  x
)  .N  ( 2nd `  x ) )  e. 
N. )
4432, 34, 43syl2anc 643 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  (
( 1st `  x
)  .N  ( 2nd `  x ) )  e. 
N. )
45 1nqenq 8795 . . . . . . . . . 10  |-  ( ( ( 1st `  x
)  .N  ( 2nd `  x ) )  e. 
N.  ->  1Q  ~Q  <. ( ( 1st `  x
)  .N  ( 2nd `  x ) ) ,  ( ( 1st `  x
)  .N  ( 2nd `  x ) ) >.
)
4644, 45syl 16 . . . . . . . . 9  |-  ( x  e.  Q.  ->  1Q  ~Q 
<. ( ( 1st `  x
)  .N  ( 2nd `  x ) ) ,  ( ( 1st `  x
)  .N  ( 2nd `  x ) ) >.
)
47 elpqn 8758 . . . . . . . . . . 11  |-  ( 1Q  e.  Q.  ->  1Q  e.  ( N.  X.  N. ) )
486, 47ax-mp 8 . . . . . . . . . 10  |-  1Q  e.  ( N.  X.  N. )
49 opelxpi 4869 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  x
)  .N  ( 2nd `  x ) )  e. 
N.  /\  ( ( 1st `  x )  .N  ( 2nd `  x
) )  e.  N. )  ->  <. ( ( 1st `  x )  .N  ( 2nd `  x ) ) ,  ( ( 1st `  x )  .N  ( 2nd `  x ) )
>.  e.  ( N.  X.  N. ) )
5044, 44, 49syl2anc 643 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  <. (
( 1st `  x
)  .N  ( 2nd `  x ) ) ,  ( ( 1st `  x
)  .N  ( 2nd `  x ) ) >.  e.  ( N.  X.  N. ) )
51 nqereq 8768 . . . . . . . . . 10  |-  ( ( 1Q  e.  ( N. 
X.  N. )  /\  <. ( ( 1st `  x
)  .N  ( 2nd `  x ) ) ,  ( ( 1st `  x
)  .N  ( 2nd `  x ) ) >.  e.  ( N.  X.  N. ) )  ->  ( 1Q  ~Q  <. ( ( 1st `  x )  .N  ( 2nd `  x ) ) ,  ( ( 1st `  x )  .N  ( 2nd `  x ) )
>. 
<->  ( /Q `  1Q )  =  ( /Q ` 
<. ( ( 1st `  x
)  .N  ( 2nd `  x ) ) ,  ( ( 1st `  x
)  .N  ( 2nd `  x ) ) >.
) ) )
5248, 50, 51sylancr 645 . . . . . . . . 9  |-  ( x  e.  Q.  ->  ( 1Q  ~Q  <. ( ( 1st `  x )  .N  ( 2nd `  x ) ) ,  ( ( 1st `  x )  .N  ( 2nd `  x ) )
>. 
<->  ( /Q `  1Q )  =  ( /Q ` 
<. ( ( 1st `  x
)  .N  ( 2nd `  x ) ) ,  ( ( 1st `  x
)  .N  ( 2nd `  x ) ) >.
) ) )
5346, 52mpbid 202 . . . . . . . 8  |-  ( x  e.  Q.  ->  ( /Q `  1Q )  =  ( /Q `  <. ( ( 1st `  x
)  .N  ( 2nd `  x ) ) ,  ( ( 1st `  x
)  .N  ( 2nd `  x ) ) >.
) )
5442, 53syl5reqr 2451 . . . . . . 7  |-  ( x  e.  Q.  ->  ( /Q `  <. ( ( 1st `  x )  .N  ( 2nd `  x ) ) ,  ( ( 1st `  x )  .N  ( 2nd `  x ) )
>. )  =  1Q )
5530, 40, 543eqtrd 2440 . . . . . 6  |-  ( x  e.  Q.  ->  (
x  .Q  ( /Q
`  <. ( 2nd `  x
) ,  ( 1st `  x ) >. )
)  =  1Q )
56 fvex 5701 . . . . . . 7  |-  ( /Q
`  <. ( 2nd `  x
) ,  ( 1st `  x ) >. )  e.  _V
57 oveq2 6048 . . . . . . . 8  |-  ( y  =  ( /Q `  <. ( 2nd `  x
) ,  ( 1st `  x ) >. )  ->  ( x  .Q  y
)  =  ( x  .Q  ( /Q `  <. ( 2nd `  x
) ,  ( 1st `  x ) >. )
) )
5857eqeq1d 2412 . . . . . . 7  |-  ( y  =  ( /Q `  <. ( 2nd `  x
) ,  ( 1st `  x ) >. )  ->  ( ( x  .Q  y )  =  1Q  <->  ( x  .Q  ( /Q
`  <. ( 2nd `  x
) ,  ( 1st `  x ) >. )
)  =  1Q ) )
5956, 58spcev 3003 . . . . . 6  |-  ( ( x  .Q  ( /Q
`  <. ( 2nd `  x
) ,  ( 1st `  x ) >. )
)  =  1Q  ->  E. y ( x  .Q  y )  =  1Q )
6055, 59syl 16 . . . . 5  |-  ( x  e.  Q.  ->  E. y
( x  .Q  y
)  =  1Q )
61 mulcomnq 8786 . . . . . . 7  |-  ( r  .Q  s )  =  ( s  .Q  r
)
62 mulassnq 8792 . . . . . . 7  |-  ( ( r  .Q  s )  .Q  t )  =  ( r  .Q  (
s  .Q  t ) )
63 mulidnq 8796 . . . . . . 7  |-  ( r  e.  Q.  ->  (
r  .Q  1Q )  =  r )
646, 9, 10, 61, 62, 63caovmo 6243 . . . . . 6  |-  E* y
( x  .Q  y
)  =  1Q
65 eu5 2292 . . . . . 6  |-  ( E! y ( x  .Q  y )  =  1Q  <->  ( E. y ( x  .Q  y )  =  1Q  /\  E* y
( x  .Q  y
)  =  1Q ) )
6664, 65mpbiran2 886 . . . . 5  |-  ( E! y ( x  .Q  y )  =  1Q  <->  E. y ( x  .Q  y )  =  1Q )
6760, 66sylibr 204 . . . 4  |-  ( x  e.  Q.  ->  E! y ( x  .Q  y )  =  1Q )
68 cnvimass 5183 . . . . . . . 8  |-  ( `'  .Q  " { 1Q } )  C_  dom  .Q
69 df-rq 8750 . . . . . . . 8  |-  *Q  =  ( `'  .Q  " { 1Q } )
709eqcomi 2408 . . . . . . . 8  |-  ( Q. 
X.  Q. )  =  dom  .Q
7168, 69, 703sstr4i 3347 . . . . . . 7  |-  *Q  C_  ( Q.  X.  Q. )
72 relxp 4942 . . . . . . 7  |-  Rel  ( Q.  X.  Q. )
73 relss 4922 . . . . . . 7  |-  ( *Q  C_  ( Q.  X.  Q. )  ->  ( Rel  ( Q.  X.  Q. )  ->  Rel  *Q ) )
7471, 72, 73mp2 9 . . . . . 6  |-  Rel  *Q
7569eleq2i 2468 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  *Q  <->  <. x ,  y
>.  e.  ( `'  .Q  " { 1Q } ) )
76 ffn 5550 . . . . . . . . 9  |-  (  .Q  : ( Q.  X.  Q. ) --> Q.  ->  .Q  Fn  ( Q.  X.  Q. )
)
77 fniniseg 5810 . . . . . . . . 9  |-  (  .Q  Fn  ( Q.  X.  Q. )  ->  ( <.
x ,  y >.  e.  ( `'  .Q  " { 1Q } )  <->  ( <. x ,  y >.  e.  ( Q.  X.  Q. )  /\  (  .Q  `  <. x ,  y >. )  =  1Q ) ) )
788, 76, 77mp2b 10 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  ( `'  .Q  " { 1Q } )  <->  ( <. x ,  y >.  e.  ( Q.  X.  Q. )  /\  (  .Q  `  <. x ,  y >. )  =  1Q ) )
79 ancom 438 . . . . . . . . 9  |-  ( (
<. x ,  y >.  e.  ( Q.  X.  Q. )  /\  (  .Q  `  <. x ,  y >.
)  =  1Q )  <-> 
( (  .Q  `  <. x ,  y >.
)  =  1Q  /\  <.
x ,  y >.  e.  ( Q.  X.  Q. ) ) )
80 ancom 438 . . . . . . . . . 10  |-  ( ( x  e.  Q.  /\  ( x  .Q  y
)  =  1Q )  <-> 
( ( x  .Q  y )  =  1Q 
/\  x  e.  Q. ) )
81 eleq1 2464 . . . . . . . . . . . . . . 15  |-  ( ( x  .Q  y )  =  1Q  ->  (
( x  .Q  y
)  e.  Q.  <->  1Q  e.  Q. ) )
826, 81mpbiri 225 . . . . . . . . . . . . . 14  |-  ( ( x  .Q  y )  =  1Q  ->  (
x  .Q  y )  e.  Q. )
839, 10ndmovrcl 6192 . . . . . . . . . . . . . 14  |-  ( ( x  .Q  y )  e.  Q.  ->  (
x  e.  Q.  /\  y  e.  Q. )
)
8482, 83syl 16 . . . . . . . . . . . . 13  |-  ( ( x  .Q  y )  =  1Q  ->  (
x  e.  Q.  /\  y  e.  Q. )
)
85 opelxpi 4869 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  -> 
<. x ,  y >.  e.  ( Q.  X.  Q. ) )
8684, 85syl 16 . . . . . . . . . . . 12  |-  ( ( x  .Q  y )  =  1Q  ->  <. x ,  y >.  e.  ( Q.  X.  Q. )
)
8784simpld 446 . . . . . . . . . . . 12  |-  ( ( x  .Q  y )  =  1Q  ->  x  e.  Q. )
8886, 872thd 232 . . . . . . . . . . 11  |-  ( ( x  .Q  y )  =  1Q  ->  ( <. x ,  y >.  e.  ( Q.  X.  Q. ) 
<->  x  e.  Q. )
)
8988pm5.32i 619 . . . . . . . . . 10  |-  ( ( ( x  .Q  y
)  =  1Q  /\  <.
x ,  y >.  e.  ( Q.  X.  Q. ) )  <->  ( (
x  .Q  y )  =  1Q  /\  x  e.  Q. ) )
90 df-ov 6043 . . . . . . . . . . . 12  |-  ( x  .Q  y )  =  (  .Q  `  <. x ,  y >. )
9190eqeq1i 2411 . . . . . . . . . . 11  |-  ( ( x  .Q  y )  =  1Q  <->  (  .Q  ` 
<. x ,  y >.
)  =  1Q )
9291anbi1i 677 . . . . . . . . . 10  |-  ( ( ( x  .Q  y
)  =  1Q  /\  <.
x ,  y >.  e.  ( Q.  X.  Q. ) )  <->  ( (  .Q  `  <. x ,  y
>. )  =  1Q  /\ 
<. x ,  y >.  e.  ( Q.  X.  Q. ) ) )
9380, 89, 923bitr2ri 266 . . . . . . . . 9  |-  ( ( (  .Q  `  <. x ,  y >. )  =  1Q  /\  <. x ,  y >.  e.  ( Q.  X.  Q. )
)  <->  ( x  e. 
Q.  /\  ( x  .Q  y )  =  1Q ) )
9479, 93bitri 241 . . . . . . . 8  |-  ( (
<. x ,  y >.  e.  ( Q.  X.  Q. )  /\  (  .Q  `  <. x ,  y >.
)  =  1Q )  <-> 
( x  e.  Q.  /\  ( x  .Q  y
)  =  1Q ) )
9575, 78, 943bitri 263 . . . . . . 7  |-  ( <.
x ,  y >.  e.  *Q  <->  ( x  e. 
Q.  /\  ( x  .Q  y )  =  1Q ) )
9695a1i 11 . . . . . 6  |-  (  T. 
->  ( <. x ,  y
>.  e.  *Q  <->  ( x  e.  Q.  /\  ( x  .Q  y )  =  1Q ) ) )
9774, 96opabbi2dv 4981 . . . . 5  |-  (  T. 
->  *Q  =  { <. x ,  y >.  |  ( x  e.  Q.  /\  ( x  .Q  y
)  =  1Q ) } )
9897trud 1329 . . . 4  |-  *Q  =  { <. x ,  y
>.  |  ( x  e.  Q.  /\  ( x  .Q  y )  =  1Q ) }
9918, 20, 67, 98fvopab3g 5761 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  _V )  ->  ( ( *Q `  A )  =  B  <-> 
( A  .Q  B
)  =  1Q ) )
10099ex 424 . 2  |-  ( A  e.  Q.  ->  ( B  e.  _V  ->  ( ( *Q `  A
)  =  B  <->  ( A  .Q  B )  =  1Q ) ) )
1014, 16, 100pm5.21ndd 344 1  |-  ( A  e.  Q.  ->  (
( *Q `  A
)  =  B  <->  ( A  .Q  B )  =  1Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    T. wtru 1322   E.wex 1547    = wceq 1649    e. wcel 1721   E!weu 2254   E*wmo 2255   _Vcvv 2916    C_ wss 3280   {csn 3774   <.cop 3777   class class class wbr 4172   {copab 4225    X. cxp 4835   `'ccnv 4836   dom cdm 4837   "cima 4840   Rel wrel 4842    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040   1stc1st 6306   2ndc2nd 6307   N.cnpi 8675    .N cmi 8677    .pQ cmpq 8680    ~Q ceq 8682   Q.cnq 8683   1Qc1q 8684   /Qcerq 8685    .Q cmq 8687   *Qcrq 8688
This theorem is referenced by:  recidnq  8798  recrecnq  8800  reclem3pr  8882
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-omul 6688  df-er 6864  df-ni 8705  df-mi 8707  df-lti 8708  df-mpq 8742  df-enq 8744  df-nq 8745  df-erq 8746  df-mq 8748  df-1nq 8749  df-rq 8750
  Copyright terms: Public domain W3C validator