MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reclem2pr Structured version   Unicode version

Theorem reclem2pr 9204
Description: Lemma for Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 30-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
reclempr.1  |-  B  =  { x  |  E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A ) }
Assertion
Ref Expression
reclem2pr  |-  ( A  e.  P.  ->  B  e.  P. )
Distinct variable groups:    x, y, A    x, B
Allowed substitution hint:    B( y)

Proof of Theorem reclem2pr
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 prpssnq 9146 . . . . . 6  |-  ( A  e.  P.  ->  A  C. 
Q. )
2 pssnel 3732 . . . . . 6  |-  ( A 
C.  Q.  ->  E. x
( x  e.  Q.  /\ 
-.  x  e.  A
) )
3 recclnq 9122 . . . . . . . . . . 11  |-  ( x  e.  Q.  ->  ( *Q `  x )  e. 
Q. )
4 nsmallnq 9133 . . . . . . . . . . 11  |-  ( ( *Q `  x )  e.  Q.  ->  E. z 
z  <Q  ( *Q `  x ) )
53, 4syl 16 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  E. z 
z  <Q  ( *Q `  x ) )
65adantr 462 . . . . . . . . 9  |-  ( ( x  e.  Q.  /\  -.  x  e.  A
)  ->  E. z 
z  <Q  ( *Q `  x ) )
7 recrecnq 9123 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  Q.  ->  ( *Q `  ( *Q `  x ) )  =  x )
87eleq1d 2499 . . . . . . . . . . . . . . . 16  |-  ( x  e.  Q.  ->  (
( *Q `  ( *Q `  x ) )  e.  A  <->  x  e.  A ) )
98notbid 294 . . . . . . . . . . . . . . 15  |-  ( x  e.  Q.  ->  ( -.  ( *Q `  ( *Q `  x ) )  e.  A  <->  -.  x  e.  A ) )
109anbi2d 696 . . . . . . . . . . . . . 14  |-  ( x  e.  Q.  ->  (
( z  <Q  ( *Q `  x )  /\  -.  ( *Q `  ( *Q `  x ) )  e.  A )  <->  ( z  <Q  ( *Q `  x
)  /\  -.  x  e.  A ) ) )
11 fvex 5689 . . . . . . . . . . . . . . 15  |-  ( *Q
`  x )  e. 
_V
12 breq2 4284 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( *Q `  x )  ->  (
z  <Q  y  <->  z  <Q  ( *Q `  x ) ) )
13 fveq2 5679 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( *Q `  x )  ->  ( *Q `  y )  =  ( *Q `  ( *Q `  x ) ) )
1413eleq1d 2499 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( *Q `  x )  ->  (
( *Q `  y
)  e.  A  <->  ( *Q `  ( *Q `  x
) )  e.  A
) )
1514notbid 294 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( *Q `  x )  ->  ( -.  ( *Q `  y
)  e.  A  <->  -.  ( *Q `  ( *Q `  x ) )  e.  A ) )
1612, 15anbi12d 703 . . . . . . . . . . . . . . 15  |-  ( y  =  ( *Q `  x )  ->  (
( z  <Q  y  /\  -.  ( *Q `  y )  e.  A
)  <->  ( z  <Q 
( *Q `  x
)  /\  -.  ( *Q `  ( *Q `  x ) )  e.  A ) ) )
1711, 16spcev 3053 . . . . . . . . . . . . . 14  |-  ( ( z  <Q  ( *Q `  x )  /\  -.  ( *Q `  ( *Q
`  x ) )  e.  A )  ->  E. y ( z  <Q 
y  /\  -.  ( *Q `  y )  e.  A ) )
1810, 17syl6bir 229 . . . . . . . . . . . . 13  |-  ( x  e.  Q.  ->  (
( z  <Q  ( *Q `  x )  /\  -.  x  e.  A
)  ->  E. y
( z  <Q  y  /\  -.  ( *Q `  y )  e.  A
) ) )
19 vex 2965 . . . . . . . . . . . . . 14  |-  z  e. 
_V
20 breq1 4283 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
x  <Q  y  <->  z  <Q  y ) )
2120anbi1d 697 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  (
( x  <Q  y  /\  -.  ( *Q `  y )  e.  A
)  <->  ( z  <Q 
y  /\  -.  ( *Q `  y )  e.  A ) ) )
2221exbidv 1679 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  ( E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A )  <->  E. y
( z  <Q  y  /\  -.  ( *Q `  y )  e.  A
) ) )
23 reclempr.1 . . . . . . . . . . . . . 14  |-  B  =  { x  |  E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A ) }
2419, 22, 23elab2 3098 . . . . . . . . . . . . 13  |-  ( z  e.  B  <->  E. y
( z  <Q  y  /\  -.  ( *Q `  y )  e.  A
) )
2518, 24syl6ibr 227 . . . . . . . . . . . 12  |-  ( x  e.  Q.  ->  (
( z  <Q  ( *Q `  x )  /\  -.  x  e.  A
)  ->  z  e.  B ) )
2625exp3acom23 1418 . . . . . . . . . . 11  |-  ( x  e.  Q.  ->  ( -.  x  e.  A  ->  ( z  <Q  ( *Q `  x )  -> 
z  e.  B ) ) )
2726imp 429 . . . . . . . . . 10  |-  ( ( x  e.  Q.  /\  -.  x  e.  A
)  ->  ( z  <Q  ( *Q `  x
)  ->  z  e.  B ) )
2827eximdv 1675 . . . . . . . . 9  |-  ( ( x  e.  Q.  /\  -.  x  e.  A
)  ->  ( E. z  z  <Q  ( *Q
`  x )  ->  E. z  z  e.  B ) )
296, 28mpd 15 . . . . . . . 8  |-  ( ( x  e.  Q.  /\  -.  x  e.  A
)  ->  E. z 
z  e.  B )
30 n0 3634 . . . . . . . 8  |-  ( B  =/=  (/)  <->  E. z  z  e.  B )
3129, 30sylibr 212 . . . . . . 7  |-  ( ( x  e.  Q.  /\  -.  x  e.  A
)  ->  B  =/=  (/) )
3231exlimiv 1687 . . . . . 6  |-  ( E. x ( x  e. 
Q.  /\  -.  x  e.  A )  ->  B  =/=  (/) )
331, 2, 323syl 20 . . . . 5  |-  ( A  e.  P.  ->  B  =/=  (/) )
34 0pss 3704 . . . . 5  |-  ( (/)  C.  B  <->  B  =/=  (/) )
3533, 34sylibr 212 . . . 4  |-  ( A  e.  P.  ->  (/)  C.  B
)
36 prn0 9145 . . . . . . 7  |-  ( A  e.  P.  ->  A  =/=  (/) )
37 elprnq 9147 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  z  e.  Q. )
38 recrecnq 9123 . . . . . . . . . . . . . . . 16  |-  ( z  e.  Q.  ->  ( *Q `  ( *Q `  z ) )  =  z )
3938eleq1d 2499 . . . . . . . . . . . . . . 15  |-  ( z  e.  Q.  ->  (
( *Q `  ( *Q `  z ) )  e.  A  <->  z  e.  A ) )
4039anbi2d 696 . . . . . . . . . . . . . 14  |-  ( z  e.  Q.  ->  (
( A  e.  P.  /\  ( *Q `  ( *Q `  z ) )  e.  A )  <->  ( A  e.  P.  /\  z  e.  A ) ) )
4137, 40syl 16 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( ( A  e. 
P.  /\  ( *Q `  ( *Q `  z
) )  e.  A
)  <->  ( A  e. 
P.  /\  z  e.  A ) ) )
42 fvex 5689 . . . . . . . . . . . . . 14  |-  ( *Q
`  z )  e. 
_V
43 fveq2 5679 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( *Q `  z )  ->  ( *Q `  x )  =  ( *Q `  ( *Q `  z ) ) )
4443eleq1d 2499 . . . . . . . . . . . . . . 15  |-  ( x  =  ( *Q `  z )  ->  (
( *Q `  x
)  e.  A  <->  ( *Q `  ( *Q `  z
) )  e.  A
) )
4544anbi2d 696 . . . . . . . . . . . . . 14  |-  ( x  =  ( *Q `  z )  ->  (
( A  e.  P.  /\  ( *Q `  x
)  e.  A )  <-> 
( A  e.  P.  /\  ( *Q `  ( *Q `  z ) )  e.  A ) ) )
4642, 45spcev 3053 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  ( *Q `  ( *Q
`  z ) )  e.  A )  ->  E. x ( A  e. 
P.  /\  ( *Q `  x )  e.  A
) )
4741, 46syl6bir 229 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( ( A  e. 
P.  /\  z  e.  A )  ->  E. x
( A  e.  P.  /\  ( *Q `  x
)  e.  A ) ) )
4847pm2.43i 47 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  E. x ( A  e.  P.  /\  ( *Q `  x )  e.  A ) )
49 elprnq 9147 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  ( *Q `  x )  e.  A )  -> 
( *Q `  x
)  e.  Q. )
50 dmrecnq 9124 . . . . . . . . . . . . . . 15  |-  dom  *Q  =  Q.
51 0nnq 9080 . . . . . . . . . . . . . . 15  |-  -.  (/)  e.  Q.
5250, 51ndmfvrcl 5703 . . . . . . . . . . . . . 14  |-  ( ( *Q `  x )  e.  Q.  ->  x  e.  Q. )
5349, 52syl 16 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  ( *Q `  x )  e.  A )  ->  x  e.  Q. )
54 ltrnq 9135 . . . . . . . . . . . . . . . 16  |-  ( x 
<Q  y  <->  ( *Q `  y )  <Q  ( *Q `  x ) )
55 prcdnq 9149 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  ( *Q `  x )  e.  A )  -> 
( ( *Q `  y )  <Q  ( *Q `  x )  -> 
( *Q `  y
)  e.  A ) )
5654, 55syl5bi 217 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  ( *Q `  x )  e.  A )  -> 
( x  <Q  y  ->  ( *Q `  y
)  e.  A ) )
5756alrimiv 1684 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  ( *Q `  x )  e.  A )  ->  A. y ( x  <Q  y  ->  ( *Q `  y )  e.  A
) )
5823abeq2i 2540 . . . . . . . . . . . . . . . 16  |-  ( x  e.  B  <->  E. y
( x  <Q  y  /\  -.  ( *Q `  y )  e.  A
) )
59 exanali 1637 . . . . . . . . . . . . . . . 16  |-  ( E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A )  <->  -.  A. y
( x  <Q  y  ->  ( *Q `  y
)  e.  A ) )
6058, 59bitri 249 . . . . . . . . . . . . . . 15  |-  ( x  e.  B  <->  -.  A. y
( x  <Q  y  ->  ( *Q `  y
)  e.  A ) )
6160con2bii 332 . . . . . . . . . . . . . 14  |-  ( A. y ( x  <Q  y  ->  ( *Q `  y )  e.  A
)  <->  -.  x  e.  B )
6257, 61sylib 196 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  ( *Q `  x )  e.  A )  ->  -.  x  e.  B
)
6353, 62jca 529 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  ( *Q `  x )  e.  A )  -> 
( x  e.  Q.  /\ 
-.  x  e.  B
) )
6463eximi 1626 . . . . . . . . . . 11  |-  ( E. x ( A  e. 
P.  /\  ( *Q `  x )  e.  A
)  ->  E. x
( x  e.  Q.  /\ 
-.  x  e.  B
) )
6548, 64syl 16 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  E. x ( x  e.  Q.  /\  -.  x  e.  B )
)
6665ex 434 . . . . . . . . 9  |-  ( A  e.  P.  ->  (
z  e.  A  ->  E. x ( x  e. 
Q.  /\  -.  x  e.  B ) ) )
6766exlimdv 1689 . . . . . . . 8  |-  ( A  e.  P.  ->  ( E. z  z  e.  A  ->  E. x ( x  e.  Q.  /\  -.  x  e.  B )
) )
68 n0 3634 . . . . . . . 8  |-  ( A  =/=  (/)  <->  E. z  z  e.  A )
69 nss 3402 . . . . . . . 8  |-  ( -. 
Q.  C_  B  <->  E. x
( x  e.  Q.  /\ 
-.  x  e.  B
) )
7067, 68, 693imtr4g 270 . . . . . . 7  |-  ( A  e.  P.  ->  ( A  =/=  (/)  ->  -.  Q.  C_  B ) )
7136, 70mpd 15 . . . . . 6  |-  ( A  e.  P.  ->  -.  Q.  C_  B )
72 ltrelnq 9082 . . . . . . . . . . . 12  |-  <Q  C_  ( Q.  X.  Q. )
7372brel 4874 . . . . . . . . . . 11  |-  ( x 
<Q  y  ->  ( x  e.  Q.  /\  y  e.  Q. ) )
7473simpld 456 . . . . . . . . . 10  |-  ( x 
<Q  y  ->  x  e. 
Q. )
7574adantr 462 . . . . . . . . 9  |-  ( ( x  <Q  y  /\  -.  ( *Q `  y
)  e.  A )  ->  x  e.  Q. )
7675exlimiv 1687 . . . . . . . 8  |-  ( E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A )  ->  x  e.  Q. )
7758, 76sylbi 195 . . . . . . 7  |-  ( x  e.  B  ->  x  e.  Q. )
7877ssriv 3348 . . . . . 6  |-  B  C_  Q.
7971, 78jctil 534 . . . . 5  |-  ( A  e.  P.  ->  ( B  C_  Q.  /\  -.  Q.  C_  B ) )
80 dfpss3 3430 . . . . 5  |-  ( B 
C.  Q.  <->  ( B  C_  Q.  /\  -.  Q.  C_  B ) )
8179, 80sylibr 212 . . . 4  |-  ( A  e.  P.  ->  B  C. 
Q. )
8235, 81jca 529 . . 3  |-  ( A  e.  P.  ->  ( (/)  C.  B  /\  B  C.  Q. ) )
83 ltsonq 9125 . . . . . . . . . . . 12  |-  <Q  Or  Q.
8483, 72sotri 5213 . . . . . . . . . . 11  |-  ( ( z  <Q  x  /\  x  <Q  y )  -> 
z  <Q  y )
8584ex 434 . . . . . . . . . 10  |-  ( z 
<Q  x  ->  ( x 
<Q  y  ->  z  <Q 
y ) )
8685anim1d 559 . . . . . . . . 9  |-  ( z 
<Q  x  ->  ( ( x  <Q  y  /\  -.  ( *Q `  y
)  e.  A )  ->  ( z  <Q 
y  /\  -.  ( *Q `  y )  e.  A ) ) )
8786eximdv 1675 . . . . . . . 8  |-  ( z 
<Q  x  ->  ( E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A )  ->  E. y
( z  <Q  y  /\  -.  ( *Q `  y )  e.  A
) ) )
8887, 58, 243imtr4g 270 . . . . . . 7  |-  ( z 
<Q  x  ->  ( x  e.  B  ->  z  e.  B ) )
8988com12 31 . . . . . 6  |-  ( x  e.  B  ->  (
z  <Q  x  ->  z  e.  B ) )
9089alrimiv 1684 . . . . 5  |-  ( x  e.  B  ->  A. z
( z  <Q  x  ->  z  e.  B ) )
91 nfe1 1777 . . . . . . . . . 10  |-  F/ y E. y ( x 
<Q  y  /\  -.  ( *Q `  y )  e.  A )
9291nfab 2573 . . . . . . . . 9  |-  F/_ y { x  |  E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A ) }
9323, 92nfcxfr 2566 . . . . . . . 8  |-  F/_ y B
94 nfv 1672 . . . . . . . 8  |-  F/ y  x  <Q  z
9593, 94nfrex 2761 . . . . . . 7  |-  F/ y E. z  e.  B  x  <Q  z
96 19.8a 1792 . . . . . . . . . . . . . 14  |-  ( ( z  <Q  y  /\  -.  ( *Q `  y
)  e.  A )  ->  E. y ( z 
<Q  y  /\  -.  ( *Q `  y )  e.  A ) )
9796, 24sylibr 212 . . . . . . . . . . . . 13  |-  ( ( z  <Q  y  /\  -.  ( *Q `  y
)  e.  A )  ->  z  e.  B
)
9897adantll 706 . . . . . . . . . . . 12  |-  ( ( ( x  <Q  z  /\  z  <Q  y )  /\  -.  ( *Q
`  y )  e.  A )  ->  z  e.  B )
99 simpll 746 . . . . . . . . . . . 12  |-  ( ( ( x  <Q  z  /\  z  <Q  y )  /\  -.  ( *Q
`  y )  e.  A )  ->  x  <Q  z )
10098, 99jca 529 . . . . . . . . . . 11  |-  ( ( ( x  <Q  z  /\  z  <Q  y )  /\  -.  ( *Q
`  y )  e.  A )  ->  (
z  e.  B  /\  x  <Q  z ) )
101100expcom 435 . . . . . . . . . 10  |-  ( -.  ( *Q `  y
)  e.  A  -> 
( ( x  <Q  z  /\  z  <Q  y
)  ->  ( z  e.  B  /\  x  <Q  z ) ) )
102101eximdv 1675 . . . . . . . . 9  |-  ( -.  ( *Q `  y
)  e.  A  -> 
( E. z ( x  <Q  z  /\  z  <Q  y )  ->  E. z ( z  e.  B  /\  x  <Q  z ) ) )
103 ltbtwnnq 9134 . . . . . . . . 9  |-  ( x 
<Q  y  <->  E. z ( x 
<Q  z  /\  z  <Q  y ) )
104 df-rex 2711 . . . . . . . . 9  |-  ( E. z  e.  B  x 
<Q  z  <->  E. z ( z  e.  B  /\  x  <Q  z ) )
105102, 103, 1043imtr4g 270 . . . . . . . 8  |-  ( -.  ( *Q `  y
)  e.  A  -> 
( x  <Q  y  ->  E. z  e.  B  x  <Q  z ) )
106105impcom 430 . . . . . . 7  |-  ( ( x  <Q  y  /\  -.  ( *Q `  y
)  e.  A )  ->  E. z  e.  B  x  <Q  z )
10795, 106exlimi 1843 . . . . . 6  |-  ( E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A )  ->  E. z  e.  B  x  <Q  z )
10858, 107sylbi 195 . . . . 5  |-  ( x  e.  B  ->  E. z  e.  B  x  <Q  z )
10990, 108jca 529 . . . 4  |-  ( x  e.  B  ->  ( A. z ( z  <Q  x  ->  z  e.  B
)  /\  E. z  e.  B  x  <Q  z ) )
110109rgen 2771 . . 3  |-  A. x  e.  B  ( A. z ( z  <Q  x  ->  z  e.  B
)  /\  E. z  e.  B  x  <Q  z )
11182, 110jctir 535 . 2  |-  ( A  e.  P.  ->  (
( (/)  C.  B  /\  B  C.  Q. )  /\  A. x  e.  B  ( A. z ( z 
<Q  x  ->  z  e.  B )  /\  E. z  e.  B  x  <Q  z ) ) )
112 elnp 9143 . 2  |-  ( B  e.  P.  <->  ( ( (/)  C.  B  /\  B  C.  Q. )  /\  A. x  e.  B  ( A. z ( z  <Q  x  ->  z  e.  B
)  /\  E. z  e.  B  x  <Q  z ) ) )
113111, 112sylibr 212 1  |-  ( A  e.  P.  ->  B  e.  P. )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1360    = wceq 1362   E.wex 1589    e. wcel 1755   {cab 2419    =/= wne 2596   A.wral 2705   E.wrex 2706    C_ wss 3316    C. wpss 3317   (/)c0 3625   class class class wbr 4280   ` cfv 5406   Q.cnq 9006   *Qcrq 9011    <Q cltq 9012   P.cnp 9013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-omul 6913  df-er 7089  df-ni 9028  df-pli 9029  df-mi 9030  df-lti 9031  df-plpq 9064  df-mpq 9065  df-ltpq 9066  df-enq 9067  df-nq 9068  df-erq 9069  df-plq 9070  df-mq 9071  df-1nq 9072  df-rq 9073  df-ltnq 9074  df-np 9137
This theorem is referenced by:  reclem3pr  9205  reclem4pr  9206  recexpr  9207
  Copyright terms: Public domain W3C validator