MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recld2 Structured version   Unicode version

Theorem recld2 20403
Description: The real numbers are a closed set in the topology on  CC. (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypothesis
Ref Expression
recld2.1  |-  J  =  ( TopOpen ` fld )
Assertion
Ref Expression
recld2  |-  RR  e.  ( Clsd `  J )

Proof of Theorem recld2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 3495 . . 3  |-  ( CC 
\  RR )  C_  CC
2 eldifi 3490 . . . . . . . 8  |-  ( x  e.  ( CC  \  RR )  ->  x  e.  CC )
32imcld 12696 . . . . . . 7  |-  ( x  e.  ( CC  \  RR )  ->  ( Im
`  x )  e.  RR )
43recnd 9424 . . . . . 6  |-  ( x  e.  ( CC  \  RR )  ->  ( Im
`  x )  e.  CC )
5 eldifn 3491 . . . . . . 7  |-  ( x  e.  ( CC  \  RR )  ->  -.  x  e.  RR )
6 reim0b 12620 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
x  e.  RR  <->  ( Im `  x )  =  0 ) )
72, 6syl 16 . . . . . . . 8  |-  ( x  e.  ( CC  \  RR )  ->  ( x  e.  RR  <->  ( Im `  x )  =  0 ) )
87necon3bbid 2654 . . . . . . 7  |-  ( x  e.  ( CC  \  RR )  ->  ( -.  x  e.  RR  <->  ( Im `  x )  =/=  0
) )
95, 8mpbid 210 . . . . . 6  |-  ( x  e.  ( CC  \  RR )  ->  ( Im
`  x )  =/=  0 )
104, 9absrpcld 12946 . . . . 5  |-  ( x  e.  ( CC  \  RR )  ->  ( abs `  ( Im `  x
) )  e.  RR+ )
11 cnxmet 20364 . . . . . . . . 9  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
1211a1i 11 . . . . . . . 8  |-  ( x  e.  ( CC  \  RR )  ->  ( abs 
o.  -  )  e.  ( *Met `  CC ) )
134abscld 12934 . . . . . . . . 9  |-  ( x  e.  ( CC  \  RR )  ->  ( abs `  ( Im `  x
) )  e.  RR )
1413rexrd 9445 . . . . . . . 8  |-  ( x  e.  ( CC  \  RR )  ->  ( abs `  ( Im `  x
) )  e.  RR* )
15 elbl 19975 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  x  e.  CC  /\  ( abs `  ( Im `  x ) )  e. 
RR* )  ->  (
y  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  (
Im `  x )
) )  <->  ( y  e.  CC  /\  ( x ( abs  o.  -  ) y )  < 
( abs `  (
Im `  x )
) ) ) )
1612, 2, 14, 15syl3anc 1218 . . . . . . 7  |-  ( x  e.  ( CC  \  RR )  ->  ( y  e.  ( x (
ball `  ( abs  o. 
-  ) ) ( abs `  ( Im
`  x ) ) )  <->  ( y  e.  CC  /\  ( x ( abs  o.  -  ) y )  < 
( abs `  (
Im `  x )
) ) ) )
17 simprl 755 . . . . . . . . 9  |-  ( ( x  e.  ( CC 
\  RR )  /\  ( y  e.  CC  /\  ( x ( abs 
o.  -  ) y
)  <  ( abs `  ( Im `  x
) ) ) )  ->  y  e.  CC )
182adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  x  e.  CC )
19 simpr 461 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  y  e.  RR )
2019recnd 9424 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  y  e.  CC )
2118, 20imsubd 12718 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( Im `  (
x  -  y ) )  =  ( ( Im `  x )  -  ( Im `  y ) ) )
22 reim0 12619 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  RR  ->  (
Im `  y )  =  0 )
2322adantl 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( Im `  y
)  =  0 )
2423oveq2d 6119 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( ( Im `  x )  -  (
Im `  y )
)  =  ( ( Im `  x )  -  0 ) )
254adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( Im `  x
)  e.  CC )
2625subid1d 9720 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( ( Im `  x )  -  0 )  =  ( Im
`  x ) )
2721, 24, 263eqtrd 2479 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( Im `  (
x  -  y ) )  =  ( Im
`  x ) )
2827fveq2d 5707 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( abs `  (
Im `  ( x  -  y ) ) )  =  ( abs `  ( Im `  x
) ) )
2918, 20subcld 9731 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( x  -  y
)  e.  CC )
30 absimle 12810 . . . . . . . . . . . . . . . . 17  |-  ( ( x  -  y )  e.  CC  ->  ( abs `  ( Im `  ( x  -  y
) ) )  <_ 
( abs `  (
x  -  y ) ) )
3129, 30syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( abs `  (
Im `  ( x  -  y ) ) )  <_  ( abs `  ( x  -  y
) ) )
3228, 31eqbrtrrd 4326 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( abs `  (
Im `  x )
)  <_  ( abs `  ( x  -  y
) ) )
3325abscld 12934 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( abs `  (
Im `  x )
)  e.  RR )
3429abscld 12934 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( abs `  (
x  -  y ) )  e.  RR )
3533, 34lenltd 9532 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( ( abs `  (
Im `  x )
)  <_  ( abs `  ( x  -  y
) )  <->  -.  ( abs `  ( x  -  y ) )  < 
( abs `  (
Im `  x )
) ) )
3632, 35mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  -.  ( abs `  (
x  -  y ) )  <  ( abs `  ( Im `  x
) ) )
37 eqid 2443 . . . . . . . . . . . . . . . . 17  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
3837cnmetdval 20362 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x ( abs 
o.  -  ) y
)  =  ( abs `  ( x  -  y
) ) )
3918, 20, 38syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( x ( abs 
o.  -  ) y
)  =  ( abs `  ( x  -  y
) ) )
4039breq1d 4314 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( ( x ( abs  o.  -  )
y )  <  ( abs `  ( Im `  x ) )  <->  ( abs `  ( x  -  y
) )  <  ( abs `  ( Im `  x ) ) ) )
4136, 40mtbird 301 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  -.  ( x ( abs  o.  -  )
y )  <  ( abs `  ( Im `  x ) ) )
4241ex 434 . . . . . . . . . . . 12  |-  ( x  e.  ( CC  \  RR )  ->  ( y  e.  RR  ->  -.  ( x ( abs 
o.  -  ) y
)  <  ( abs `  ( Im `  x
) ) ) )
4342con2d 115 . . . . . . . . . . 11  |-  ( x  e.  ( CC  \  RR )  ->  ( ( x ( abs  o.  -  ) y )  <  ( abs `  (
Im `  x )
)  ->  -.  y  e.  RR ) )
4443adantr 465 . . . . . . . . . 10  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  CC )  ->  ( ( x ( abs  o.  -  )
y )  <  ( abs `  ( Im `  x ) )  ->  -.  y  e.  RR ) )
4544impr 619 . . . . . . . . 9  |-  ( ( x  e.  ( CC 
\  RR )  /\  ( y  e.  CC  /\  ( x ( abs 
o.  -  ) y
)  <  ( abs `  ( Im `  x
) ) ) )  ->  -.  y  e.  RR )
4617, 45eldifd 3351 . . . . . . . 8  |-  ( ( x  e.  ( CC 
\  RR )  /\  ( y  e.  CC  /\  ( x ( abs 
o.  -  ) y
)  <  ( abs `  ( Im `  x
) ) ) )  ->  y  e.  ( CC  \  RR ) )
4746ex 434 . . . . . . 7  |-  ( x  e.  ( CC  \  RR )  ->  ( ( y  e.  CC  /\  ( x ( abs 
o.  -  ) y
)  <  ( abs `  ( Im `  x
) ) )  -> 
y  e.  ( CC 
\  RR ) ) )
4816, 47sylbid 215 . . . . . 6  |-  ( x  e.  ( CC  \  RR )  ->  ( y  e.  ( x (
ball `  ( abs  o. 
-  ) ) ( abs `  ( Im
`  x ) ) )  ->  y  e.  ( CC  \  RR ) ) )
4948ssrdv 3374 . . . . 5  |-  ( x  e.  ( CC  \  RR )  ->  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  (
Im `  x )
) )  C_  ( CC  \  RR ) )
50 oveq2 6111 . . . . . . 7  |-  ( y  =  ( abs `  (
Im `  x )
)  ->  ( x
( ball `  ( abs  o. 
-  ) ) y )  =  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  (
Im `  x )
) ) )
5150sseq1d 3395 . . . . . 6  |-  ( y  =  ( abs `  (
Im `  x )
)  ->  ( (
x ( ball `  ( abs  o.  -  ) ) y )  C_  ( CC  \  RR )  <->  ( x
( ball `  ( abs  o. 
-  ) ) ( abs `  ( Im
`  x ) ) )  C_  ( CC  \  RR ) ) )
5251rspcev 3085 . . . . 5  |-  ( ( ( abs `  (
Im `  x )
)  e.  RR+  /\  (
x ( ball `  ( abs  o.  -  ) ) ( abs `  (
Im `  x )
) )  C_  ( CC  \  RR ) )  ->  E. y  e.  RR+  ( x ( ball `  ( abs  o.  -  ) ) y ) 
C_  ( CC  \  RR ) )
5310, 49, 52syl2anc 661 . . . 4  |-  ( x  e.  ( CC  \  RR )  ->  E. y  e.  RR+  ( x (
ball `  ( abs  o. 
-  ) ) y )  C_  ( CC  \  RR ) )
5453rgen 2793 . . 3  |-  A. x  e.  ( CC  \  RR ) E. y  e.  RR+  ( x ( ball `  ( abs  o.  -  ) ) y ) 
C_  ( CC  \  RR )
55 recld2.1 . . . . . 6  |-  J  =  ( TopOpen ` fld )
5655cnfldtopn 20373 . . . . 5  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
5756elmopn2 20032 . . . 4  |-  ( ( abs  o.  -  )  e.  ( *Met `  CC )  ->  ( ( CC  \  RR )  e.  J  <->  ( ( CC  \  RR )  C_  CC  /\  A. x  e.  ( CC  \  RR ) E. y  e.  RR+  ( x ( ball `  ( abs  o.  -  ) ) y ) 
C_  ( CC  \  RR ) ) ) )
5811, 57ax-mp 5 . . 3  |-  ( ( CC  \  RR )  e.  J  <->  ( ( CC  \  RR )  C_  CC  /\  A. x  e.  ( CC  \  RR ) E. y  e.  RR+  ( x ( ball `  ( abs  o.  -  ) ) y ) 
C_  ( CC  \  RR ) ) )
591, 54, 58mpbir2an 911 . 2  |-  ( CC 
\  RR )  e.  J
6055cnfldtop 20375 . . 3  |-  J  e. 
Top
61 ax-resscn 9351 . . 3  |-  RR  C_  CC
6256mopnuni 20028 . . . . 5  |-  ( ( abs  o.  -  )  e.  ( *Met `  CC )  ->  CC  =  U. J )
6311, 62ax-mp 5 . . . 4  |-  CC  =  U. J
6463iscld2 18644 . . 3  |-  ( ( J  e.  Top  /\  RR  C_  CC )  -> 
( RR  e.  (
Clsd `  J )  <->  ( CC  \  RR )  e.  J ) )
6560, 61, 64mp2an 672 . 2  |-  ( RR  e.  ( Clsd `  J
)  <->  ( CC  \  RR )  e.  J
)
6659, 65mpbir 209 1  |-  RR  e.  ( Clsd `  J )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2618   A.wral 2727   E.wrex 2728    \ cdif 3337    C_ wss 3340   U.cuni 4103   class class class wbr 4304    o. ccom 4856   ` cfv 5430  (class class class)co 6103   CCcc 9292   RRcr 9293   0cc0 9294   RR*cxr 9429    < clt 9430    <_ cle 9431    - cmin 9607   RR+crp 11003   Imcim 12599   abscabs 12735   TopOpenctopn 14372   *Metcxmt 17813   ballcbl 17815  ℂfldccnfld 17830   Topctop 18510   Clsdccld 18632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-1o 6932  df-oadd 6936  df-er 7113  df-map 7228  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-sup 7703  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-2 10392  df-3 10393  df-4 10394  df-5 10395  df-6 10396  df-7 10397  df-8 10398  df-9 10399  df-10 10400  df-n0 10592  df-z 10659  df-dec 10768  df-uz 10874  df-q 10966  df-rp 11004  df-xneg 11101  df-xadd 11102  df-xmul 11103  df-fz 11450  df-seq 11819  df-exp 11878  df-cj 12600  df-re 12601  df-im 12602  df-sqr 12736  df-abs 12737  df-struct 14188  df-ndx 14189  df-slot 14190  df-base 14191  df-plusg 14263  df-mulr 14264  df-starv 14265  df-tset 14269  df-ple 14270  df-ds 14272  df-unif 14273  df-rest 14373  df-topn 14374  df-topgen 14394  df-psmet 17821  df-xmet 17822  df-met 17823  df-bl 17824  df-mopn 17825  df-cnfld 17831  df-top 18515  df-bases 18517  df-topon 18518  df-topsp 18519  df-cld 18635  df-xms 19907  df-ms 19908
This theorem is referenced by:  zcld2  20404  rellycmp  20541  recmet  20846  ishl2  20894  recms  20896  logdmopn  22106  dvtanlem  28453  dvasin  28492  dvacos  28493  dvreasin  28494  dvreacos  28495
  Copyright terms: Public domain W3C validator