MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recld2 Unicode version

Theorem recld2 18798
Description: The real numbers are a closed set in the topology on  CC. (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypothesis
Ref Expression
recld2.1  |-  J  =  ( TopOpen ` fld )
Assertion
Ref Expression
recld2  |-  RR  e.  ( Clsd `  J )

Proof of Theorem recld2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 3434 . . 3  |-  ( CC 
\  RR )  C_  CC
2 eldifi 3429 . . . . . . . 8  |-  ( x  e.  ( CC  \  RR )  ->  x  e.  CC )
32imcld 11955 . . . . . . 7  |-  ( x  e.  ( CC  \  RR )  ->  ( Im
`  x )  e.  RR )
43recnd 9070 . . . . . 6  |-  ( x  e.  ( CC  \  RR )  ->  ( Im
`  x )  e.  CC )
5 eldifn 3430 . . . . . . 7  |-  ( x  e.  ( CC  \  RR )  ->  -.  x  e.  RR )
6 reim0b 11879 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
x  e.  RR  <->  ( Im `  x )  =  0 ) )
72, 6syl 16 . . . . . . . 8  |-  ( x  e.  ( CC  \  RR )  ->  ( x  e.  RR  <->  ( Im `  x )  =  0 ) )
87necon3bbid 2601 . . . . . . 7  |-  ( x  e.  ( CC  \  RR )  ->  ( -.  x  e.  RR  <->  ( Im `  x )  =/=  0
) )
95, 8mpbid 202 . . . . . 6  |-  ( x  e.  ( CC  \  RR )  ->  ( Im
`  x )  =/=  0 )
104, 9absrpcld 12205 . . . . 5  |-  ( x  e.  ( CC  \  RR )  ->  ( abs `  ( Im `  x
) )  e.  RR+ )
11 cnxmet 18760 . . . . . . . . 9  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
1211a1i 11 . . . . . . . 8  |-  ( x  e.  ( CC  \  RR )  ->  ( abs 
o.  -  )  e.  ( * Met `  CC ) )
134abscld 12193 . . . . . . . . 9  |-  ( x  e.  ( CC  \  RR )  ->  ( abs `  ( Im `  x
) )  e.  RR )
1413rexrd 9090 . . . . . . . 8  |-  ( x  e.  ( CC  \  RR )  ->  ( abs `  ( Im `  x
) )  e.  RR* )
15 elbl 18371 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  x  e.  CC  /\  ( abs `  ( Im `  x ) )  e. 
RR* )  ->  (
y  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  (
Im `  x )
) )  <->  ( y  e.  CC  /\  ( x ( abs  o.  -  ) y )  < 
( abs `  (
Im `  x )
) ) ) )
1612, 2, 14, 15syl3anc 1184 . . . . . . 7  |-  ( x  e.  ( CC  \  RR )  ->  ( y  e.  ( x (
ball `  ( abs  o. 
-  ) ) ( abs `  ( Im
`  x ) ) )  <->  ( y  e.  CC  /\  ( x ( abs  o.  -  ) y )  < 
( abs `  (
Im `  x )
) ) ) )
17 simprl 733 . . . . . . . . 9  |-  ( ( x  e.  ( CC 
\  RR )  /\  ( y  e.  CC  /\  ( x ( abs 
o.  -  ) y
)  <  ( abs `  ( Im `  x
) ) ) )  ->  y  e.  CC )
182adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  x  e.  CC )
19 simpr 448 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  y  e.  RR )
2019recnd 9070 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  y  e.  CC )
2118, 20imsubd 11977 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( Im `  (
x  -  y ) )  =  ( ( Im `  x )  -  ( Im `  y ) ) )
22 reim0 11878 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  RR  ->  (
Im `  y )  =  0 )
2322adantl 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( Im `  y
)  =  0 )
2423oveq2d 6056 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( ( Im `  x )  -  (
Im `  y )
)  =  ( ( Im `  x )  -  0 ) )
254adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( Im `  x
)  e.  CC )
2625subid1d 9356 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( ( Im `  x )  -  0 )  =  ( Im
`  x ) )
2721, 24, 263eqtrd 2440 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( Im `  (
x  -  y ) )  =  ( Im
`  x ) )
2827fveq2d 5691 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( abs `  (
Im `  ( x  -  y ) ) )  =  ( abs `  ( Im `  x
) ) )
2918, 20subcld 9367 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( x  -  y
)  e.  CC )
30 absimle 12069 . . . . . . . . . . . . . . . . 17  |-  ( ( x  -  y )  e.  CC  ->  ( abs `  ( Im `  ( x  -  y
) ) )  <_ 
( abs `  (
x  -  y ) ) )
3129, 30syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( abs `  (
Im `  ( x  -  y ) ) )  <_  ( abs `  ( x  -  y
) ) )
3228, 31eqbrtrrd 4194 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( abs `  (
Im `  x )
)  <_  ( abs `  ( x  -  y
) ) )
3325abscld 12193 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( abs `  (
Im `  x )
)  e.  RR )
3429abscld 12193 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( abs `  (
x  -  y ) )  e.  RR )
3533, 34lenltd 9175 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( ( abs `  (
Im `  x )
)  <_  ( abs `  ( x  -  y
) )  <->  -.  ( abs `  ( x  -  y ) )  < 
( abs `  (
Im `  x )
) ) )
3632, 35mpbid 202 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  -.  ( abs `  (
x  -  y ) )  <  ( abs `  ( Im `  x
) ) )
37 eqid 2404 . . . . . . . . . . . . . . . . 17  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
3837cnmetdval 18758 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x ( abs 
o.  -  ) y
)  =  ( abs `  ( x  -  y
) ) )
3918, 20, 38syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( x ( abs 
o.  -  ) y
)  =  ( abs `  ( x  -  y
) ) )
4039breq1d 4182 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( ( x ( abs  o.  -  )
y )  <  ( abs `  ( Im `  x ) )  <->  ( abs `  ( x  -  y
) )  <  ( abs `  ( Im `  x ) ) ) )
4136, 40mtbird 293 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  -.  ( x ( abs  o.  -  )
y )  <  ( abs `  ( Im `  x ) ) )
4241ex 424 . . . . . . . . . . . 12  |-  ( x  e.  ( CC  \  RR )  ->  ( y  e.  RR  ->  -.  ( x ( abs 
o.  -  ) y
)  <  ( abs `  ( Im `  x
) ) ) )
4342con2d 109 . . . . . . . . . . 11  |-  ( x  e.  ( CC  \  RR )  ->  ( ( x ( abs  o.  -  ) y )  <  ( abs `  (
Im `  x )
)  ->  -.  y  e.  RR ) )
4443adantr 452 . . . . . . . . . 10  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  CC )  ->  ( ( x ( abs  o.  -  )
y )  <  ( abs `  ( Im `  x ) )  ->  -.  y  e.  RR ) )
4544impr 603 . . . . . . . . 9  |-  ( ( x  e.  ( CC 
\  RR )  /\  ( y  e.  CC  /\  ( x ( abs 
o.  -  ) y
)  <  ( abs `  ( Im `  x
) ) ) )  ->  -.  y  e.  RR )
4617, 45eldifd 3291 . . . . . . . 8  |-  ( ( x  e.  ( CC 
\  RR )  /\  ( y  e.  CC  /\  ( x ( abs 
o.  -  ) y
)  <  ( abs `  ( Im `  x
) ) ) )  ->  y  e.  ( CC  \  RR ) )
4746ex 424 . . . . . . 7  |-  ( x  e.  ( CC  \  RR )  ->  ( ( y  e.  CC  /\  ( x ( abs 
o.  -  ) y
)  <  ( abs `  ( Im `  x
) ) )  -> 
y  e.  ( CC 
\  RR ) ) )
4816, 47sylbid 207 . . . . . 6  |-  ( x  e.  ( CC  \  RR )  ->  ( y  e.  ( x (
ball `  ( abs  o. 
-  ) ) ( abs `  ( Im
`  x ) ) )  ->  y  e.  ( CC  \  RR ) ) )
4948ssrdv 3314 . . . . 5  |-  ( x  e.  ( CC  \  RR )  ->  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  (
Im `  x )
) )  C_  ( CC  \  RR ) )
50 oveq2 6048 . . . . . . 7  |-  ( y  =  ( abs `  (
Im `  x )
)  ->  ( x
( ball `  ( abs  o. 
-  ) ) y )  =  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  (
Im `  x )
) ) )
5150sseq1d 3335 . . . . . 6  |-  ( y  =  ( abs `  (
Im `  x )
)  ->  ( (
x ( ball `  ( abs  o.  -  ) ) y )  C_  ( CC  \  RR )  <->  ( x
( ball `  ( abs  o. 
-  ) ) ( abs `  ( Im
`  x ) ) )  C_  ( CC  \  RR ) ) )
5251rspcev 3012 . . . . 5  |-  ( ( ( abs `  (
Im `  x )
)  e.  RR+  /\  (
x ( ball `  ( abs  o.  -  ) ) ( abs `  (
Im `  x )
) )  C_  ( CC  \  RR ) )  ->  E. y  e.  RR+  ( x ( ball `  ( abs  o.  -  ) ) y ) 
C_  ( CC  \  RR ) )
5310, 49, 52syl2anc 643 . . . 4  |-  ( x  e.  ( CC  \  RR )  ->  E. y  e.  RR+  ( x (
ball `  ( abs  o. 
-  ) ) y )  C_  ( CC  \  RR ) )
5453rgen 2731 . . 3  |-  A. x  e.  ( CC  \  RR ) E. y  e.  RR+  ( x ( ball `  ( abs  o.  -  ) ) y ) 
C_  ( CC  \  RR )
55 recld2.1 . . . . . 6  |-  J  =  ( TopOpen ` fld )
5655cnfldtopn 18769 . . . . 5  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
5756elmopn2 18428 . . . 4  |-  ( ( abs  o.  -  )  e.  ( * Met `  CC )  ->  ( ( CC 
\  RR )  e.  J  <->  ( ( CC 
\  RR )  C_  CC  /\  A. x  e.  ( CC  \  RR ) E. y  e.  RR+  ( x ( ball `  ( abs  o.  -  ) ) y ) 
C_  ( CC  \  RR ) ) ) )
5811, 57ax-mp 8 . . 3  |-  ( ( CC  \  RR )  e.  J  <->  ( ( CC  \  RR )  C_  CC  /\  A. x  e.  ( CC  \  RR ) E. y  e.  RR+  ( x ( ball `  ( abs  o.  -  ) ) y ) 
C_  ( CC  \  RR ) ) )
591, 54, 58mpbir2an 887 . 2  |-  ( CC 
\  RR )  e.  J
6055cnfldtop 18771 . . 3  |-  J  e. 
Top
61 ax-resscn 9003 . . 3  |-  RR  C_  CC
6256mopnuni 18424 . . . . 5  |-  ( ( abs  o.  -  )  e.  ( * Met `  CC )  ->  CC  =  U. J )
6311, 62ax-mp 8 . . . 4  |-  CC  =  U. J
6463iscld2 17047 . . 3  |-  ( ( J  e.  Top  /\  RR  C_  CC )  -> 
( RR  e.  (
Clsd `  J )  <->  ( CC  \  RR )  e.  J ) )
6560, 61, 64mp2an 654 . 2  |-  ( RR  e.  ( Clsd `  J
)  <->  ( CC  \  RR )  e.  J
)
6659, 65mpbir 201 1  |-  RR  e.  ( Clsd `  J )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667    \ cdif 3277    C_ wss 3280   U.cuni 3975   class class class wbr 4172    o. ccom 4841   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   RR*cxr 9075    < clt 9076    <_ cle 9077    - cmin 9247   RR+crp 10568   Imcim 11858   abscabs 11994   TopOpenctopn 13604   * Metcxmt 16641   ballcbl 16643  ℂfldccnfld 16658   Topctop 16913   Clsdccld 17035
This theorem is referenced by:  zcld2  18799  rellycmp  18935  recmet  19229  ishl2  19277  logdmopn  20493  recms  24296
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-fz 11000  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-plusg 13497  df-mulr 13498  df-starv 13499  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-rest 13605  df-topn 13606  df-topgen 13622  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-xms 18303  df-ms 18304
  Copyright terms: Public domain W3C validator