Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  recgt0ii Unicode version

Theorem recgt0ii 9872
 Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.)
Hypotheses
Ref Expression
ltplus1.1
recgt0i.2
Assertion
Ref Expression
recgt0ii

Proof of Theorem recgt0ii
StepHypRef Expression
1 ax-1cn 9004 . . . . . 6
2 ltplus1.1 . . . . . . 7
32recni 9058 . . . . . 6
4 ax-1ne0 9015 . . . . . 6
5 recgt0i.2 . . . . . . 7
62, 5gt0ne0ii 9519 . . . . . 6
71, 3, 4, 6divne0i 9718 . . . . 5
87necomi 2649 . . . 4
9 df-ne 2569 . . . 4
108, 9mpbi 200 . . 3
11 0lt1 9506 . . . . 5
12 0re 9047 . . . . . 6
13 1re 9046 . . . . . 6
1412, 13ltnsymi 9148 . . . . 5
1511, 14ax-mp 8 . . . 4
162, 6rereccli 9735 . . . . . . . . 9
1716renegcli 9318 . . . . . . . 8
1817, 2mulgt0i 9161 . . . . . . 7
195, 18mpan2 653 . . . . . 6
2016recni 9058 . . . . . . . 8
2120, 3mulneg1i 9435 . . . . . . 7
223, 6recidi 9701 . . . . . . . . 9
233, 20, 22mulcomli 9053 . . . . . . . 8
2423negeqi 9255 . . . . . . 7
2521, 24eqtri 2424 . . . . . 6
2619, 25syl6breq 4211 . . . . 5
27 lt0neg1 9490 . . . . . 6
2816, 27ax-mp 8 . . . . 5
29 lt0neg1 9490 . . . . . 6
3013, 29ax-mp 8 . . . . 5
3126, 28, 303imtr4i 258 . . . 4
3215, 31mto 169 . . 3
3310, 32pm3.2ni 828 . 2
34 axlttri 9103 . . 3
3512, 16, 34mp2an 654 . 2
3633, 35mpbir 201 1
 Colors of variables: wff set class Syntax hints:   wn 3   wb 177   wo 358   wceq 1649   wcel 1721   wne 2567   class class class wbr 4172  (class class class)co 6040  cr 8945  cc0 8946  c1 8947   cmul 8951   clt 9076  cneg 9248   cdiv 9633 This theorem is referenced by:  halfgt0  10144  0.999...  12613  sincos2sgn  12750  rpnnen2lem3  12771  rpnnen2lem4  12772  rpnnen2lem9  12777  pcoass  19002  log2tlbnd  20738  stoweidlem34  27650  stoweidlem59  27675 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634
 Copyright terms: Public domain W3C validator