MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recgt0 Structured version   Unicode version

Theorem recgt0 10274
Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 25-Aug-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
recgt0  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( 1  /  A ) )

Proof of Theorem recgt0
StepHypRef Expression
1 simpl 457 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  RR )
21recnd 9513 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  CC )
3 gt0ne0 9905 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  =/=  0 )
42, 3recne0d 10202 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  =/=  0 )
54necomd 2719 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  =/=  ( 1  /  A ) )
65neneqd 2651 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  ->  -.  0  =  (
1  /  A ) )
7 0lt1 9963 . . . . 5  |-  0  <  1
8 0re 9487 . . . . . 6  |-  0  e.  RR
9 1re 9486 . . . . . 6  |-  1  e.  RR
108, 9ltnsymi 9594 . . . . 5  |-  ( 0  <  1  ->  -.  1  <  0 )
117, 10ax-mp 5 . . . 4  |-  -.  1  <  0
12 simpll 753 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  A  e.  RR )
133adantr 465 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  A  =/=  0 )
1412, 13rereccld 10259 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  /  A )  e.  RR )
1514renegcld 9876 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  -u ( 1  /  A )  e.  RR )
16 simpr 461 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  /  A )  <  0 )
171, 3rereccld 10259 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  e.  RR )
1817adantr 465 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  /  A )  e.  RR )
1918lt0neg1d 10010 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( (
1  /  A )  <  0  <->  0  <  -u ( 1  /  A
) ) )
2016, 19mpbid 210 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  0  <  -u ( 1  /  A
) )
21 simplr 754 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  0  <  A )
2215, 12, 20, 21mulgt0d 9627 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  0  <  (
-u ( 1  /  A )  x.  A
) )
232adantr 465 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  A  e.  CC )
2423, 13reccld 10201 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  /  A )  e.  CC )
2524, 23mulneg1d 9898 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( -u (
1  /  A )  x.  A )  = 
-u ( ( 1  /  A )  x.  A ) )
2623, 13recid2d 10204 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( (
1  /  A )  x.  A )  =  1 )
2726negeqd 9705 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  -u ( ( 1  /  A )  x.  A )  = 
-u 1 )
2825, 27eqtrd 2492 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( -u (
1  /  A )  x.  A )  = 
-u 1 )
2922, 28breqtrd 4414 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  0  <  -u 1 )
30 1red 9502 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  1  e.  RR )
3130lt0neg1d 10010 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  ( 1  <  0  <->  0  <  -u 1 ) )
3229, 31mpbird 232 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( 1  /  A )  <  0
)  ->  1  <  0 )
3332ex 434 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  /  A )  <  0  ->  1  <  0 ) )
3411, 33mtoi 178 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  ->  -.  ( 1  /  A
)  <  0 )
35 ioran 490 . . 3  |-  ( -.  ( 0  =  ( 1  /  A )  \/  ( 1  /  A )  <  0
)  <->  ( -.  0  =  ( 1  /  A )  /\  -.  ( 1  /  A
)  <  0 ) )
366, 34, 35sylanbrc 664 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  ->  -.  ( 0  =  ( 1  /  A )  \/  ( 1  /  A )  <  0
) )
37 axlttri 9547 . . 3  |-  ( ( 0  e.  RR  /\  ( 1  /  A
)  e.  RR )  ->  ( 0  < 
( 1  /  A
)  <->  -.  ( 0  =  ( 1  /  A )  \/  (
1  /  A )  <  0 ) ) )
388, 17, 37sylancr 663 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 0  <  (
1  /  A )  <->  -.  ( 0  =  ( 1  /  A )  \/  ( 1  /  A )  <  0
) ) )
3936, 38mpbird 232 1  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( 1  /  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2644   class class class wbr 4390  (class class class)co 6190   CCcc 9381   RRcr 9382   0cc0 9383   1c1 9384    x. cmul 9388    < clt 9519   -ucneg 9697    / cdiv 10094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-br 4391  df-opab 4449  df-mpt 4450  df-id 4734  df-po 4739  df-so 4740  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-er 7201  df-en 7411  df-dom 7412  df-sdom 7413  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-div 10095
This theorem is referenced by:  prodgt0  10275  ltdiv1  10294  ltrec1  10320  lerec2  10321  lediv12a  10326  recgt1i  10330  recreclt  10332  recgt0i  10338  recgt0d  10368  nnrecgt0  10460  nnrecl  10678  resqrex  12842  leopmul  25673  cdj1i  25972
  Copyright terms: Public domain W3C validator