MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recexsrlem Structured version   Unicode version

Theorem recexsrlem 9476
Description: The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
recexsrlem  |-  ( 0R 
<R  A  ->  E. x  e.  R.  ( A  .R  x )  =  1R )
Distinct variable group:    x, A

Proof of Theorem recexsrlem
Dummy variables  y 
z  w  v  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 9441 . . . 4  |-  <R  C_  ( R.  X.  R. )
21brel 5047 . . 3  |-  ( 0R 
<R  A  ->  ( 0R  e.  R.  /\  A  e.  R. ) )
32simprd 463 . 2  |-  ( 0R 
<R  A  ->  A  e. 
R. )
4 df-nr 9430 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
5 breq2 4451 . . . 4  |-  ( [
<. y ,  z >. ]  ~R  =  A  -> 
( 0R  <R  [ <. y ,  z >. ]  ~R  <->  0R 
<R  A ) )
6 oveq1 6289 . . . . . 6  |-  ( [
<. y ,  z >. ]  ~R  =  A  -> 
( [ <. y ,  z >. ]  ~R  .R  x )  =  ( A  .R  x ) )
76eqeq1d 2469 . . . . 5  |-  ( [
<. y ,  z >. ]  ~R  =  A  -> 
( ( [ <. y ,  z >. ]  ~R  .R  x )  =  1R  <->  ( A  .R  x )  =  1R ) )
87rexbidv 2973 . . . 4  |-  ( [
<. y ,  z >. ]  ~R  =  A  -> 
( E. x  e. 
R.  ( [ <. y ,  z >. ]  ~R  .R  x )  =  1R  <->  E. x  e.  R.  ( A  .R  x )  =  1R ) )
95, 8imbi12d 320 . . 3  |-  ( [
<. y ,  z >. ]  ~R  =  A  -> 
( ( 0R  <R  [
<. y ,  z >. ]  ~R  ->  E. x  e.  R.  ( [ <. y ,  z >. ]  ~R  .R  x )  =  1R ) 
<->  ( 0R  <R  A  ->  E. x  e.  R.  ( A  .R  x
)  =  1R )
) )
10 gt0srpr 9451 . . . . 5  |-  ( 0R 
<R  [ <. y ,  z
>. ]  ~R  <->  z  <P  y )
11 ltexpri 9417 . . . . 5  |-  ( z 
<P  y  ->  E. w  e.  P.  ( z  +P.  w )  =  y )
1210, 11sylbi 195 . . . 4  |-  ( 0R 
<R  [ <. y ,  z
>. ]  ~R  ->  E. w  e.  P.  ( z  +P.  w )  =  y )
13 recexpr 9425 . . . . . 6  |-  ( w  e.  P.  ->  E. v  e.  P.  ( w  .P.  v )  =  1P )
14 1pr 9389 . . . . . . . . . . . 12  |-  1P  e.  P.
15 addclpr 9392 . . . . . . . . . . . 12  |-  ( ( v  e.  P.  /\  1P  e.  P. )  -> 
( v  +P.  1P )  e.  P. )
1614, 15mpan2 671 . . . . . . . . . . 11  |-  ( v  e.  P.  ->  (
v  +P.  1P )  e.  P. )
17 enrex 9440 . . . . . . . . . . . 12  |-  ~R  e.  _V
1817, 4ecopqsi 7365 . . . . . . . . . . 11  |-  ( ( ( v  +P.  1P )  e.  P.  /\  1P  e.  P. )  ->  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
1916, 14, 18sylancl 662 . . . . . . . . . 10  |-  ( v  e.  P.  ->  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
2019ad2antlr 726 . . . . . . . . 9  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  v  e.  P. )  /\  (
( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y ) )  ->  [ <. (
v  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
2116, 14jctir 538 . . . . . . . . . . . . . 14  |-  ( v  e.  P.  ->  (
( v  +P.  1P )  e.  P.  /\  1P  e.  P. ) )
2221anim2i 569 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  v  e.  P. )  ->  ( ( y  e.  P.  /\  z  e.  P. )  /\  (
( v  +P.  1P )  e.  P.  /\  1P  e.  P. ) ) )
2322adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  v  e.  P. )  /\  (
( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y ) )  ->  ( (
y  e.  P.  /\  z  e.  P. )  /\  ( ( v  +P. 
1P )  e.  P.  /\  1P  e.  P. )
) )
24 mulsrpr 9449 . . . . . . . . . . . 12  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( ( v  +P. 
1P )  e.  P.  /\  1P  e.  P. )
)  ->  ( [ <. y ,  z >. ]  ~R  .R  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( y  .P.  (
v  +P.  1P )
)  +P.  ( z  .P.  1P ) ) ,  ( ( y  .P. 
1P )  +P.  (
z  .P.  ( v  +P.  1P ) ) )
>. ]  ~R  )
2523, 24syl 16 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  v  e.  P. )  /\  (
( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y ) )  ->  ( [ <. y ,  z >. ]  ~R  .R  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( y  .P.  (
v  +P.  1P )
)  +P.  ( z  .P.  1P ) ) ,  ( ( y  .P. 
1P )  +P.  (
z  .P.  ( v  +P.  1P ) ) )
>. ]  ~R  )
26 oveq1 6289 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  +P.  w )  =  y  ->  (
( z  +P.  w
)  .P.  v )  =  ( y  .P.  v ) )
2726eqcomd 2475 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  +P.  w )  =  y  ->  (
y  .P.  v )  =  ( ( z  +P.  w )  .P.  v ) )
28 vex 3116 . . . . . . . . . . . . . . . . . . . . 21  |-  z  e. 
_V
29 vex 3116 . . . . . . . . . . . . . . . . . . . . 21  |-  w  e. 
_V
30 vex 3116 . . . . . . . . . . . . . . . . . . . . 21  |-  v  e. 
_V
31 mulcompr 9397 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  .P.  f )  =  ( f  .P.  u
)
32 distrpr 9402 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  .P.  ( f  +P.  x ) )  =  ( ( u  .P.  f )  +P.  (
u  .P.  x )
)
3328, 29, 30, 31, 32caovdir 6491 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  +P.  w )  .P.  v )  =  ( ( z  .P.  v )  +P.  (
w  .P.  v )
)
34 oveq2 6290 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( w  .P.  v )  =  1P  ->  (
( z  .P.  v
)  +P.  ( w  .P.  v ) )  =  ( ( z  .P.  v )  +P.  1P ) )
3533, 34syl5eq 2520 . . . . . . . . . . . . . . . . . . 19  |-  ( ( w  .P.  v )  =  1P  ->  (
( z  +P.  w
)  .P.  v )  =  ( ( z  .P.  v )  +P. 
1P ) )
3627, 35sylan9eqr 2530 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y )  ->  ( y  .P.  v )  =  ( ( z  .P.  v
)  +P.  1P )
)
3736oveq1d 6297 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y )  ->  ( ( y  .P.  v )  +P.  ( ( y  .P. 
1P )  +P.  (
z  .P.  1P )
) )  =  ( ( ( z  .P.  v )  +P.  1P )  +P.  ( ( y  .P.  1P )  +P.  ( z  .P.  1P ) ) ) )
38 ovex 6307 . . . . . . . . . . . . . . . . . 18  |-  ( z  .P.  v )  e. 
_V
3914elexi 3123 . . . . . . . . . . . . . . . . . 18  |-  1P  e.  _V
40 ovex 6307 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  .P.  1P )  +P.  ( z  .P. 
1P ) )  e. 
_V
41 addcompr 9395 . . . . . . . . . . . . . . . . . 18  |-  ( u  +P.  f )  =  ( f  +P.  u
)
42 addasspr 9396 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  +P.  f )  +P.  x )  =  ( u  +P.  (
f  +P.  x )
)
4338, 39, 40, 41, 42caov32 6484 . . . . . . . . . . . . . . . . 17  |-  ( ( ( z  .P.  v
)  +P.  1P )  +P.  ( ( y  .P. 
1P )  +P.  (
z  .P.  1P )
) )  =  ( ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  1P )
4437, 43syl6eq 2524 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y )  ->  ( ( y  .P.  v )  +P.  ( ( y  .P. 
1P )  +P.  (
z  .P.  1P )
) )  =  ( ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  1P ) )
4544oveq1d 6297 . . . . . . . . . . . . . . 15  |-  ( ( ( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y )  ->  ( ( ( y  .P.  v )  +P.  ( ( y  .P.  1P )  +P.  ( z  .P.  1P ) ) )  +P. 
1P )  =  ( ( ( ( z  .P.  v )  +P.  ( ( y  .P. 
1P )  +P.  (
z  .P.  1P )
) )  +P.  1P )  +P.  1P ) )
46 addasspr 9396 . . . . . . . . . . . . . . 15  |-  ( ( ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  1P )  +P. 
1P )  =  ( ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  ( 1P  +P.  1P ) )
4745, 46syl6eq 2524 . . . . . . . . . . . . . 14  |-  ( ( ( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y )  ->  ( ( ( y  .P.  v )  +P.  ( ( y  .P.  1P )  +P.  ( z  .P.  1P ) ) )  +P. 
1P )  =  ( ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  ( 1P  +P.  1P ) ) )
48 distrpr 9402 . . . . . . . . . . . . . . . . 17  |-  ( y  .P.  ( v  +P. 
1P ) )  =  ( ( y  .P.  v )  +P.  (
y  .P.  1P )
)
4948oveq1i 6292 . . . . . . . . . . . . . . . 16  |-  ( ( y  .P.  ( v  +P.  1P ) )  +P.  ( z  .P. 
1P ) )  =  ( ( ( y  .P.  v )  +P.  ( y  .P.  1P ) )  +P.  (
z  .P.  1P )
)
50 addasspr 9396 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  .P.  v
)  +P.  ( y  .P.  1P ) )  +P.  ( z  .P.  1P ) )  =  ( ( y  .P.  v
)  +P.  ( (
y  .P.  1P )  +P.  ( z  .P.  1P ) ) )
5149, 50eqtri 2496 . . . . . . . . . . . . . . 15  |-  ( ( y  .P.  ( v  +P.  1P ) )  +P.  ( z  .P. 
1P ) )  =  ( ( y  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )
5251oveq1i 6292 . . . . . . . . . . . . . 14  |-  ( ( ( y  .P.  (
v  +P.  1P )
)  +P.  ( z  .P.  1P ) )  +P. 
1P )  =  ( ( ( y  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  1P )
53 distrpr 9402 . . . . . . . . . . . . . . . . 17  |-  ( z  .P.  ( v  +P. 
1P ) )  =  ( ( z  .P.  v )  +P.  (
z  .P.  1P )
)
5453oveq2i 6293 . . . . . . . . . . . . . . . 16  |-  ( ( y  .P.  1P )  +P.  ( z  .P.  ( v  +P.  1P ) ) )  =  ( ( y  .P. 
1P )  +P.  (
( z  .P.  v
)  +P.  ( z  .P.  1P ) ) )
55 ovex 6307 . . . . . . . . . . . . . . . . 17  |-  ( y  .P.  1P )  e. 
_V
56 ovex 6307 . . . . . . . . . . . . . . . . 17  |-  ( z  .P.  1P )  e. 
_V
5755, 38, 56, 41, 42caov12 6485 . . . . . . . . . . . . . . . 16  |-  ( ( y  .P.  1P )  +P.  ( ( z  .P.  v )  +P.  ( z  .P.  1P ) ) )  =  ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )
5854, 57eqtri 2496 . . . . . . . . . . . . . . 15  |-  ( ( y  .P.  1P )  +P.  ( z  .P.  ( v  +P.  1P ) ) )  =  ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )
5958oveq1i 6292 . . . . . . . . . . . . . 14  |-  ( ( ( y  .P.  1P )  +P.  ( z  .P.  ( v  +P.  1P ) ) )  +P.  ( 1P  +P.  1P ) )  =  ( ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  ( 1P  +P.  1P ) )
6047, 52, 593eqtr4g 2533 . . . . . . . . . . . . 13  |-  ( ( ( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y )  ->  ( ( ( y  .P.  ( v  +P.  1P ) )  +P.  ( z  .P. 
1P ) )  +P. 
1P )  =  ( ( ( y  .P. 
1P )  +P.  (
z  .P.  ( v  +P.  1P ) ) )  +P.  ( 1P  +P.  1P ) ) )
61 mulclpr 9394 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  P.  /\  ( v  +P.  1P )  e.  P. )  ->  ( y  .P.  (
v  +P.  1P )
)  e.  P. )
6216, 61sylan2 474 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  P.  /\  v  e.  P. )  ->  ( y  .P.  (
v  +P.  1P )
)  e.  P. )
63 mulclpr 9394 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  P.  /\  1P  e.  P. )  -> 
( z  .P.  1P )  e.  P. )
6414, 63mpan2 671 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  P.  ->  (
z  .P.  1P )  e.  P. )
65 addclpr 9392 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  .P.  (
v  +P.  1P )
)  e.  P.  /\  ( z  .P.  1P )  e.  P. )  ->  ( ( y  .P.  ( v  +P.  1P ) )  +P.  (
z  .P.  1P )
)  e.  P. )
6662, 64, 65syl2an 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  P.  /\  v  e.  P. )  /\  z  e.  P. )  ->  ( ( y  .P.  ( v  +P. 
1P ) )  +P.  ( z  .P.  1P ) )  e.  P. )
6766an32s 802 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  v  e.  P. )  ->  ( ( y  .P.  ( v  +P. 
1P ) )  +P.  ( z  .P.  1P ) )  e.  P. )
68 mulclpr 9394 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  P.  /\  1P  e.  P. )  -> 
( y  .P.  1P )  e.  P. )
6914, 68mpan2 671 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  P.  ->  (
y  .P.  1P )  e.  P. )
70 mulclpr 9394 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  P.  /\  ( v  +P.  1P )  e.  P. )  ->  ( z  .P.  (
v  +P.  1P )
)  e.  P. )
7116, 70sylan2 474 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  P.  /\  v  e.  P. )  ->  ( z  .P.  (
v  +P.  1P )
)  e.  P. )
72 addclpr 9392 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  .P.  1P )  e.  P.  /\  (
z  .P.  ( v  +P.  1P ) )  e. 
P. )  ->  (
( y  .P.  1P )  +P.  ( z  .P.  ( v  +P.  1P ) ) )  e. 
P. )
7369, 71, 72syl2an 477 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  P.  /\  ( z  e.  P.  /\  v  e.  P. )
)  ->  ( (
y  .P.  1P )  +P.  ( z  .P.  (
v  +P.  1P )
) )  e.  P. )
7473anassrs 648 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  v  e.  P. )  ->  ( ( y  .P.  1P )  +P.  ( z  .P.  (
v  +P.  1P )
) )  e.  P. )
7567, 74jca 532 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  v  e.  P. )  ->  ( ( ( y  .P.  ( v  +P.  1P ) )  +P.  ( z  .P. 
1P ) )  e. 
P.  /\  ( (
y  .P.  1P )  +P.  ( z  .P.  (
v  +P.  1P )
) )  e.  P. ) )
76 addclpr 9392 . . . . . . . . . . . . . . . 16  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
7714, 14, 76mp2an 672 . . . . . . . . . . . . . . 15  |-  ( 1P 
+P.  1P )  e.  P.
7877, 14pm3.2i 455 . . . . . . . . . . . . . 14  |-  ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. )
79 enreceq 9439 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( y  .P.  ( v  +P. 
1P ) )  +P.  ( z  .P.  1P ) )  e.  P.  /\  ( ( y  .P. 
1P )  +P.  (
z  .P.  ( v  +P.  1P ) ) )  e.  P. )  /\  ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. ( ( y  .P.  (
v  +P.  1P )
)  +P.  ( z  .P.  1P ) ) ,  ( ( y  .P. 
1P )  +P.  (
z  .P.  ( v  +P.  1P ) ) )
>. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( y  .P.  ( v  +P.  1P ) )  +P.  (
z  .P.  1P )
)  +P.  1P )  =  ( ( ( y  .P.  1P )  +P.  ( z  .P.  ( v  +P.  1P ) ) )  +P.  ( 1P  +P.  1P ) ) ) )
8075, 78, 79sylancl 662 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  v  e.  P. )  ->  ( [ <. ( ( y  .P.  (
v  +P.  1P )
)  +P.  ( z  .P.  1P ) ) ,  ( ( y  .P. 
1P )  +P.  (
z  .P.  ( v  +P.  1P ) ) )
>. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( y  .P.  ( v  +P.  1P ) )  +P.  (
z  .P.  1P )
)  +P.  1P )  =  ( ( ( y  .P.  1P )  +P.  ( z  .P.  ( v  +P.  1P ) ) )  +P.  ( 1P  +P.  1P ) ) ) )
8160, 80syl5ibr 221 . . . . . . . . . . . 12  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  v  e.  P. )  ->  ( ( ( w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y )  ->  [ <. ( ( y  .P.  ( v  +P. 
1P ) )  +P.  ( z  .P.  1P ) ) ,  ( ( y  .P.  1P )  +P.  ( z  .P.  ( v  +P.  1P ) ) ) >. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  ) )
8281imp 429 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  v  e.  P. )  /\  (
( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y ) )  ->  [ <. (
( y  .P.  (
v  +P.  1P )
)  +P.  ( z  .P.  1P ) ) ,  ( ( y  .P. 
1P )  +P.  (
z  .P.  ( v  +P.  1P ) ) )
>. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
8325, 82eqtrd 2508 . . . . . . . . . 10  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  v  e.  P. )  /\  (
( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y ) )  ->  ( [ <. y ,  z >. ]  ~R  .R  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
84 df-1r 9435 . . . . . . . . . 10  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
8583, 84syl6eqr 2526 . . . . . . . . 9  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  v  e.  P. )  /\  (
( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y ) )  ->  ( [ <. y ,  z >. ]  ~R  .R  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  )  =  1R )
86 oveq2 6290 . . . . . . . . . . 11  |-  ( x  =  [ <. (
v  +P.  1P ) ,  1P >. ]  ~R  ->  ( [ <. y ,  z
>. ]  ~R  .R  x
)  =  ( [
<. y ,  z >. ]  ~R  .R  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  ) )
8786eqeq1d 2469 . . . . . . . . . 10  |-  ( x  =  [ <. (
v  +P.  1P ) ,  1P >. ]  ~R  ->  ( ( [ <. y ,  z >. ]  ~R  .R  x )  =  1R  <->  ( [ <. y ,  z
>. ]  ~R  .R  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  )  =  1R )
)
8887rspcev 3214 . . . . . . . . 9  |-  ( ( [ <. ( v  +P. 
1P ) ,  1P >. ]  ~R  e.  R.  /\  ( [ <. y ,  z >. ]  ~R  .R 
[ <. ( v  +P. 
1P ) ,  1P >. ]  ~R  )  =  1R )  ->  E. x  e.  R.  ( [ <. y ,  z >. ]  ~R  .R  x )  =  1R )
8920, 85, 88syl2anc 661 . . . . . . . 8  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  v  e.  P. )  /\  (
( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y ) )  ->  E. x  e.  R.  ( [ <. y ,  z >. ]  ~R  .R  x )  =  1R )
9089exp43 612 . . . . . . 7  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( v  e.  P.  ->  ( ( w  .P.  v )  =  1P 
->  ( ( z  +P.  w )  =  y  ->  E. x  e.  R.  ( [ <. y ,  z
>. ]  ~R  .R  x
)  =  1R )
) ) )
9190rexlimdv 2953 . . . . . 6  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( E. v  e. 
P.  ( w  .P.  v )  =  1P 
->  ( ( z  +P.  w )  =  y  ->  E. x  e.  R.  ( [ <. y ,  z
>. ]  ~R  .R  x
)  =  1R )
) )
9213, 91syl5 32 . . . . 5  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( w  e.  P.  ->  ( ( z  +P.  w )  =  y  ->  E. x  e.  R.  ( [ <. y ,  z
>. ]  ~R  .R  x
)  =  1R )
) )
9392rexlimdv 2953 . . . 4  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( E. w  e. 
P.  ( z  +P.  w )  =  y  ->  E. x  e.  R.  ( [ <. y ,  z
>. ]  ~R  .R  x
)  =  1R )
)
9412, 93syl5 32 . . 3  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( 0R  <R  [ <. y ,  z >. ]  ~R  ->  E. x  e.  R.  ( [ <. y ,  z
>. ]  ~R  .R  x
)  =  1R )
)
954, 9, 94ecoptocl 7398 . 2  |-  ( A  e.  R.  ->  ( 0R  <R  A  ->  E. x  e.  R.  ( A  .R  x )  =  1R ) )
963, 95mpcom 36 1  |-  ( 0R 
<R  A  ->  E. x  e.  R.  ( A  .R  x )  =  1R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   E.wrex 2815   <.cop 4033   class class class wbr 4447  (class class class)co 6282   [cec 7306   P.cnp 9233   1Pc1p 9234    +P. cpp 9235    .P. cmp 9236    <P cltp 9237    ~R cer 9238   R.cnr 9239   0Rc0r 9240   1Rc1r 9241    .R cmr 9244    <R cltr 9245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-omul 7132  df-er 7308  df-ec 7310  df-qs 7314  df-ni 9246  df-pli 9247  df-mi 9248  df-lti 9249  df-plpq 9282  df-mpq 9283  df-ltpq 9284  df-enq 9285  df-nq 9286  df-erq 9287  df-plq 9288  df-mq 9289  df-1nq 9290  df-rq 9291  df-ltnq 9292  df-np 9355  df-1p 9356  df-plp 9357  df-mp 9358  df-ltp 9359  df-enr 9429  df-nr 9430  df-mr 9432  df-ltr 9433  df-0r 9434  df-1r 9435
This theorem is referenced by:  recexsr  9480
  Copyright terms: Public domain W3C validator