MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recex Structured version   Unicode version

Theorem recex 10120
Description: Existence of reciprocal of nonzero complex number. (Contributed by Eric Schmidt, 22-May-2007.)
Assertion
Ref Expression
recex  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  E. x  e.  CC  ( A  x.  x
)  =  1 )
Distinct variable group:    x, A

Proof of Theorem recex
Dummy variables  y 
a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 9525 . . 3  |-  ( A  e.  CC  ->  E. a  e.  RR  E. b  e.  RR  A  =  ( a  +  ( _i  x.  b ) ) )
2 recextlem2 10119 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  b  e.  RR  /\  (
a  +  ( _i  x.  b ) )  =/=  0 )  -> 
( ( a  x.  a )  +  ( b  x.  b ) )  =/=  0 )
323expia 1196 . . . . . . . 8  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( a  +  ( _i  x.  b
) )  =/=  0  ->  ( ( a  x.  a )  +  ( b  x.  b ) )  =/=  0 ) )
4 remulcl 9510 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  a  e.  RR )  ->  ( a  x.  a
)  e.  RR )
54anidms 643 . . . . . . . . . . . 12  |-  ( a  e.  RR  ->  (
a  x.  a )  e.  RR )
6 remulcl 9510 . . . . . . . . . . . . 13  |-  ( ( b  e.  RR  /\  b  e.  RR )  ->  ( b  x.  b
)  e.  RR )
76anidms 643 . . . . . . . . . . . 12  |-  ( b  e.  RR  ->  (
b  x.  b )  e.  RR )
8 readdcl 9508 . . . . . . . . . . . 12  |-  ( ( ( a  x.  a
)  e.  RR  /\  ( b  x.  b
)  e.  RR )  ->  ( ( a  x.  a )  +  ( b  x.  b
) )  e.  RR )
95, 7, 8syl2an 475 . . . . . . . . . . 11  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( a  x.  a )  +  ( b  x.  b ) )  e.  RR )
10 ax-rrecex 9497 . . . . . . . . . . 11  |-  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  e.  RR  /\  ( ( a  x.  a )  +  ( b  x.  b ) )  =/=  0 )  ->  E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b
) )  x.  y
)  =  1 )
119, 10sylan 469 . . . . . . . . . 10  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  ( ( a  x.  a )  +  ( b  x.  b
) )  =/=  0
)  ->  E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )
12 recn 9515 . . . . . . . . . . . 12  |-  ( a  e.  RR  ->  a  e.  CC )
13 recn 9515 . . . . . . . . . . . 12  |-  ( b  e.  RR  ->  b  e.  CC )
14 recn 9515 . . . . . . . . . . . . . 14  |-  ( y  e.  RR  ->  y  e.  CC )
15 ax-icn 9484 . . . . . . . . . . . . . . . . . . . 20  |-  _i  e.  CC
16 mulcl 9509 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( _i  e.  CC  /\  b  e.  CC )  ->  ( _i  x.  b
)  e.  CC )
1715, 16mpan 668 . . . . . . . . . . . . . . . . . . 19  |-  ( b  e.  CC  ->  (
_i  x.  b )  e.  CC )
18 subcl 9754 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  e.  CC  /\  ( _i  x.  b
)  e.  CC )  ->  ( a  -  ( _i  x.  b
) )  e.  CC )
1917, 18sylan2 472 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( a  -  (
_i  x.  b )
)  e.  CC )
20 mulcl 9509 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  -  (
_i  x.  b )
)  e.  CC  /\  y  e.  CC )  ->  ( ( a  -  ( _i  x.  b
) )  x.  y
)  e.  CC )
2119, 20sylan 469 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( a  -  ( _i  x.  b ) )  x.  y )  e.  CC )
2221adantr 463 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  /\  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )  -> 
( ( a  -  ( _i  x.  b
) )  x.  y
)  e.  CC )
23 addcl 9507 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a  e.  CC  /\  ( _i  x.  b
)  e.  CC )  ->  ( a  +  ( _i  x.  b
) )  e.  CC )
2417, 23sylan2 472 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( a  +  ( _i  x.  b ) )  e.  CC )
2524adantr 463 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( a  +  ( _i  x.  b
) )  e.  CC )
2619adantr 463 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( a  -  ( _i  x.  b
) )  e.  CC )
27 simpr 459 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  y  e.  CC )
2825, 26, 27mulassd 9552 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( ( a  +  ( _i  x.  b ) )  x.  ( a  -  ( _i  x.  b
) ) )  x.  y )  =  ( ( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b ) )  x.  y ) ) )
29 recextlem1 10118 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( a  +  ( _i  x.  b
) )  x.  (
a  -  ( _i  x.  b ) ) )  =  ( ( a  x.  a )  +  ( b  x.  b ) ) )
3029adantr 463 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( a  +  ( _i  x.  b ) )  x.  ( a  -  (
_i  x.  b )
) )  =  ( ( a  x.  a
)  +  ( b  x.  b ) ) )
3130oveq1d 6233 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( ( a  +  ( _i  x.  b ) )  x.  ( a  -  ( _i  x.  b
) ) )  x.  y )  =  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y ) )
3228, 31eqtr3d 2439 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b
) )  x.  y
) )  =  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y ) )
33 id 22 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )
3432, 33sylan9eq 2457 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  /\  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )  -> 
( ( a  +  ( _i  x.  b
) )  x.  (
( a  -  (
_i  x.  b )
)  x.  y ) )  =  1 )
35 oveq2 6226 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( ( a  -  ( _i  x.  b ) )  x.  y )  ->  (
( a  +  ( _i  x.  b ) )  x.  x )  =  ( ( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b
) )  x.  y
) ) )
3635eqeq1d 2398 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( ( a  -  ( _i  x.  b ) )  x.  y )  ->  (
( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1  <->  (
( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b ) )  x.  y ) )  =  1 ) )
3736rspcev 3152 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( a  -  ( _i  x.  b
) )  x.  y
)  e.  CC  /\  ( ( a  +  ( _i  x.  b
) )  x.  (
( a  -  (
_i  x.  b )
)  x.  y ) )  =  1 )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 )
3822, 34, 37syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  /\  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 )
3938exp31 602 . . . . . . . . . . . . . 14  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( y  e.  CC  ->  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) ) )
4014, 39syl5 32 . . . . . . . . . . . . 13  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( y  e.  RR  ->  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) ) )
4140rexlimdv 2886 . . . . . . . . . . . 12  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
4212, 13, 41syl2an 475 . . . . . . . . . . 11  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
4342adantr 463 . . . . . . . . . 10  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  ( ( a  x.  a )  +  ( b  x.  b
) )  =/=  0
)  ->  ( E. y  e.  RR  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
4411, 43mpd 15 . . . . . . . . 9  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  ( ( a  x.  a )  +  ( b  x.  b
) )  =/=  0
)  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  x.  x )  =  1 )
4544ex 432 . . . . . . . 8  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( ( a  x.  a )  +  ( b  x.  b
) )  =/=  0  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
463, 45syld 44 . . . . . . 7  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( a  +  ( _i  x.  b
) )  =/=  0  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
4746adantr 463 . . . . . 6  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( (
a  +  ( _i  x.  b ) )  =/=  0  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
48 neeq1 2677 . . . . . . 7  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  ( A  =/=  0  <->  ( a  +  ( _i  x.  b ) )  =/=  0 ) )
4948adantl 464 . . . . . 6  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( A  =/=  0  <->  ( a  +  ( _i  x.  b
) )  =/=  0
) )
50 oveq1 6225 . . . . . . . . 9  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  ( A  x.  x )  =  ( ( a  +  ( _i  x.  b ) )  x.  x ) )
5150eqeq1d 2398 . . . . . . . 8  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  (
( A  x.  x
)  =  1  <->  (
( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
5251rexbidv 2910 . . . . . . 7  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  ( E. x  e.  CC  ( A  x.  x
)  =  1  <->  E. x  e.  CC  (
( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
5352adantl 464 . . . . . 6  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( E. x  e.  CC  ( A  x.  x )  =  1  <->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
5447, 49, 533imtr4d 268 . . . . 5  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( A  =/=  0  ->  E. x  e.  CC  ( A  x.  x )  =  1 ) )
5554ex 432 . . . 4  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( A  =  ( a  +  ( _i  x.  b ) )  ->  ( A  =/=  0  ->  E. x  e.  CC  ( A  x.  x )  =  1 ) ) )
5655rexlimivv 2893 . . 3  |-  ( E. a  e.  RR  E. b  e.  RR  A  =  ( a  +  ( _i  x.  b
) )  ->  ( A  =/=  0  ->  E. x  e.  CC  ( A  x.  x )  =  1 ) )
571, 56syl 16 . 2  |-  ( A  e.  CC  ->  ( A  =/=  0  ->  E. x  e.  CC  ( A  x.  x )  =  1 ) )
5857imp 427 1  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  E. x  e.  CC  ( A  x.  x
)  =  1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1399    e. wcel 1836    =/= wne 2591   E.wrex 2747  (class class class)co 6218   CCcc 9423   RRcr 9424   0cc0 9425   1c1 9426   _ici 9427    + caddc 9428    x. cmul 9430    - cmin 9740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2020  ax-ext 2374  ax-sep 4505  ax-nul 4513  ax-pow 4560  ax-pr 4618  ax-un 6513  ax-resscn 9482  ax-1cn 9483  ax-icn 9484  ax-addcl 9485  ax-addrcl 9486  ax-mulcl 9487  ax-mulrcl 9488  ax-mulcom 9489  ax-addass 9490  ax-mulass 9491  ax-distr 9492  ax-i2m1 9493  ax-1ne0 9494  ax-1rid 9495  ax-rnegex 9496  ax-rrecex 9497  ax-cnre 9498  ax-pre-lttri 9499  ax-pre-lttrn 9500  ax-pre-ltadd 9501  ax-pre-mulgt0 9502
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2236  df-mo 2237  df-clab 2382  df-cleq 2388  df-clel 2391  df-nfc 2546  df-ne 2593  df-nel 2594  df-ral 2751  df-rex 2752  df-reu 2753  df-rab 2755  df-v 3053  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3729  df-if 3875  df-pw 3946  df-sn 3962  df-pr 3964  df-op 3968  df-uni 4181  df-br 4385  df-opab 4443  df-mpt 4444  df-id 4726  df-po 4731  df-so 4732  df-xp 4936  df-rel 4937  df-cnv 4938  df-co 4939  df-dm 4940  df-rn 4941  df-res 4942  df-ima 4943  df-iota 5477  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-riota 6180  df-ov 6221  df-oprab 6222  df-mpt2 6223  df-er 7251  df-en 7458  df-dom 7459  df-sdom 7460  df-pnf 9563  df-mnf 9564  df-xr 9565  df-ltxr 9566  df-le 9567  df-sub 9742  df-neg 9743
This theorem is referenced by:  mulcand  10121  receu  10133
  Copyright terms: Public domain W3C validator