MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reccn2 Structured version   Unicode version

Theorem reccn2 13504
Description: The reciprocal function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) (Revised by Mario Carneiro, 22-Sep-2014.)
Hypothesis
Ref Expression
reccn2.t  |-  T  =  ( if ( 1  <_  ( ( abs `  A )  x.  B
) ,  1 ,  ( ( abs `  A
)  x.  B ) )  x.  ( ( abs `  A )  /  2 ) )
Assertion
Ref Expression
reccn2  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
Distinct variable groups:    y, z, A    y, B, z    y, T, z

Proof of Theorem reccn2
StepHypRef Expression
1 reccn2.t . . 3  |-  T  =  ( if ( 1  <_  ( ( abs `  A )  x.  B
) ,  1 ,  ( ( abs `  A
)  x.  B ) )  x.  ( ( abs `  A )  /  2 ) )
2 1rp 11225 . . . . 5  |-  1  e.  RR+
3 simpl 455 . . . . . . . 8  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  A  e.  ( CC  \  {
0 } ) )
4 eldifsn 4141 . . . . . . . 8  |-  ( A  e.  ( CC  \  { 0 } )  <-> 
( A  e.  CC  /\  A  =/=  0 ) )
53, 4sylib 196 . . . . . . 7  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  ( A  e.  CC  /\  A  =/=  0 ) )
6 absrpcl 13206 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  RR+ )
75, 6syl 16 . . . . . 6  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  ( abs `  A )  e.  RR+ )
8 rpmulcl 11243 . . . . . 6  |-  ( ( ( abs `  A
)  e.  RR+  /\  B  e.  RR+ )  ->  (
( abs `  A
)  x.  B )  e.  RR+ )
97, 8sylancom 665 . . . . 5  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  ( ( abs `  A )  x.  B )  e.  RR+ )
10 ifcl 3971 . . . . 5  |-  ( ( 1  e.  RR+  /\  (
( abs `  A
)  x.  B )  e.  RR+ )  ->  if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  e.  RR+ )
112, 9, 10sylancr 661 . . . 4  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  if ( 1  <_  ( ( abs `  A )  x.  B ) ,  1 ,  ( ( abs `  A )  x.  B
) )  e.  RR+ )
127rphalfcld 11271 . . . 4  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  ( ( abs `  A )  /  2 )  e.  RR+ )
1311, 12rpmulcld 11275 . . 3  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  ( if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  x.  ( ( abs `  A )  /  2 ) )  e.  RR+ )
141, 13syl5eqel 2546 . 2  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  T  e.  RR+ )
155adantr 463 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  e.  CC  /\  A  =/=  0 ) )
1615simpld 457 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  A  e.  CC )
17 simprl 754 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  z  e.  ( CC  \  {
0 } ) )
18 eldifsn 4141 . . . . . . . . . . 11  |-  ( z  e.  ( CC  \  { 0 } )  <-> 
( z  e.  CC  /\  z  =/=  0 ) )
1917, 18sylib 196 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  e.  CC  /\  z  =/=  0 ) )
2019simpld 457 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  z  e.  CC )
2116, 20mulcld 9605 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  x.  z )  e.  CC )
22 mulne0 10187 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( z  e.  CC  /\  z  =/=  0 ) )  -> 
( A  x.  z
)  =/=  0 )
2315, 19, 22syl2anc 659 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  x.  z )  =/=  0 )
2416, 20, 21, 23divsubdird 10355 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  -  z
)  /  ( A  x.  z ) )  =  ( ( A  /  ( A  x.  z ) )  -  ( z  /  ( A  x.  z )
) ) )
2516mulid1d 9602 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  x.  1 )  =  A )
2625oveq1d 6285 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  x.  1 )  /  ( A  x.  z ) )  =  ( A  / 
( A  x.  z
) ) )
27 1cnd 9601 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  1  e.  CC )
28 divcan5 10242 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  ( z  e.  CC  /\  z  =/=  0 )  /\  ( A  e.  CC  /\  A  =/=  0 ) )  -> 
( ( A  x.  1 )  /  ( A  x.  z )
)  =  ( 1  /  z ) )
2927, 19, 15, 28syl3anc 1226 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  x.  1 )  /  ( A  x.  z ) )  =  ( 1  / 
z ) )
3026, 29eqtr3d 2497 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  /  ( A  x.  z ) )  =  ( 1  /  z
) )
3120mulid1d 9602 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  x.  1 )  =  z )
3220, 16mulcomd 9606 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  x.  A )  =  ( A  x.  z ) )
3331, 32oveq12d 6288 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( z  x.  1 )  /  ( z  x.  A ) )  =  ( z  / 
( A  x.  z
) ) )
34 divcan5 10242 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  ( A  e.  CC  /\  A  =/=  0 )  /\  ( z  e.  CC  /\  z  =/=  0 ) )  -> 
( ( z  x.  1 )  /  (
z  x.  A ) )  =  ( 1  /  A ) )
3527, 15, 19, 34syl3anc 1226 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( z  x.  1 )  /  ( z  x.  A ) )  =  ( 1  /  A ) )
3633, 35eqtr3d 2497 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  /  ( A  x.  z ) )  =  ( 1  /  A ) )
3730, 36oveq12d 6288 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  /  ( A  x.  z )
)  -  ( z  /  ( A  x.  z ) ) )  =  ( ( 1  /  z )  -  ( 1  /  A
) ) )
3824, 37eqtrd 2495 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  -  z
)  /  ( A  x.  z ) )  =  ( ( 1  /  z )  -  ( 1  /  A
) ) )
3938fveq2d 5852 . . . . . 6  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( A  -  z )  / 
( A  x.  z
) ) )  =  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) ) )
4016, 20subcld 9922 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  -  z )  e.  CC )
4140, 21, 23absdivd 13371 . . . . . 6  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( A  -  z )  / 
( A  x.  z
) ) )  =  ( ( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) ) )
4239, 41eqtr3d 2497 . . . . 5  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( 1  /  z )  -  ( 1  /  A
) ) )  =  ( ( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) ) )
4316, 20abssubd 13369 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  =  ( abs `  (
z  -  A ) ) )
4420, 16subcld 9922 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  -  A )  e.  CC )
4544abscld 13352 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( z  -  A ) )  e.  RR )
4643, 45eqeltrd 2542 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  e.  RR )
4714adantr 463 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  e.  RR+ )
4847rpred 11259 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  e.  RR )
4921abscld 13352 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  x.  z ) )  e.  RR )
50 rpre 11227 . . . . . . . . 9  |-  ( B  e.  RR+  ->  B  e.  RR )
5150ad2antlr 724 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  B  e.  RR )
5249, 51remulcld 9613 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  x.  z )
)  x.  B )  e.  RR )
53 simprr 755 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( z  -  A ) )  < 
T )
5443, 53eqbrtrd 4459 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  < 
T )
559adantr 463 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  x.  B )  e.  RR+ )
5655rpred 11259 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  x.  B )  e.  RR )
5712adantr 463 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  e.  RR+ )
5857rpred 11259 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  e.  RR )
5956, 58remulcld 9613 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  B )  x.  ( ( abs `  A )  /  2
) )  e.  RR )
60 1re 9584 . . . . . . . . . . 11  |-  1  e.  RR
61 min2 11393 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( ( abs `  A
)  x.  B )  e.  RR )  ->  if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  <_  ( ( abs `  A )  x.  B ) )
6260, 56, 61sylancr 661 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  <_  ( ( abs `  A )  x.  B ) )
6311adantr 463 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  e.  RR+ )
6463rpred 11259 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  e.  RR )
6564, 56, 57lemul1d 11298 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  <_  ( ( abs `  A )  x.  B )  <->  ( if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  x.  ( ( abs `  A )  /  2 ) )  <_  ( ( ( abs `  A )  x.  B )  x.  ( ( abs `  A
)  /  2 ) ) ) )
6662, 65mpbid 210 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  x.  ( ( abs `  A )  /  2 ) )  <_  ( ( ( abs `  A )  x.  B )  x.  ( ( abs `  A
)  /  2 ) ) )
671, 66syl5eqbr 4472 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <_  ( ( ( abs `  A )  x.  B
)  x.  ( ( abs `  A )  /  2 ) ) )
6820abscld 13352 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  z )  e.  RR )
6916abscld 13352 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  A )  e.  RR )
7069recnd 9611 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  A )  e.  CC )
71702halvesd 10780 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  /  2 )  +  ( ( abs `  A )  /  2
) )  =  ( abs `  A ) )
7269, 68resubcld 9983 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  -  ( abs `  z ) )  e.  RR )
7316, 20abs2difd 13373 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  -  ( abs `  z ) )  <_ 
( abs `  ( A  -  z )
) )
74 min1 11392 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR  /\  ( ( abs `  A
)  x.  B )  e.  RR )  ->  if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  <_  1 )
7560, 56, 74sylancr 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  <_  1 )
76 1red 9600 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  1  e.  RR )
7764, 76, 57lemul1d 11298 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  <_  1  <->  ( if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  x.  ( ( abs `  A )  /  2 ) )  <_  ( 1  x.  ( ( abs `  A
)  /  2 ) ) ) )
7875, 77mpbid 210 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  x.  ( ( abs `  A )  /  2 ) )  <_  ( 1  x.  ( ( abs `  A
)  /  2 ) ) )
791, 78syl5eqbr 4472 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <_  ( 1  x.  (
( abs `  A
)  /  2 ) ) )
8058recnd 9611 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  e.  CC )
8180mulid2d 9603 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
1  x.  ( ( abs `  A )  /  2 ) )  =  ( ( abs `  A )  /  2
) )
8279, 81breqtrd 4463 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <_  ( ( abs `  A
)  /  2 ) )
8346, 48, 58, 54, 82ltletrd 9731 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  < 
( ( abs `  A
)  /  2 ) )
8472, 46, 58, 73, 83lelttrd 9729 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  -  ( abs `  z ) )  < 
( ( abs `  A
)  /  2 ) )
8569, 68, 58ltsubadd2d 10146 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  -  ( abs `  z ) )  < 
( ( abs `  A
)  /  2 )  <-> 
( abs `  A
)  <  ( ( abs `  z )  +  ( ( abs `  A
)  /  2 ) ) ) )
8684, 85mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  A )  < 
( ( abs `  z
)  +  ( ( abs `  A )  /  2 ) ) )
8771, 86eqbrtrd 4459 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  /  2 )  +  ( ( abs `  A )  /  2
) )  <  (
( abs `  z
)  +  ( ( abs `  A )  /  2 ) ) )
8858, 68, 58ltadd1d 10141 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  /  2 )  <  ( abs `  z
)  <->  ( ( ( abs `  A )  /  2 )  +  ( ( abs `  A
)  /  2 ) )  <  ( ( abs `  z )  +  ( ( abs `  A )  /  2
) ) ) )
8987, 88mpbird 232 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  <  ( abs `  z
) )
9058, 68, 55, 89ltmul2dd 11311 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  B )  x.  ( ( abs `  A )  /  2
) )  <  (
( ( abs `  A
)  x.  B )  x.  ( abs `  z
) ) )
9116, 20absmuld 13370 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  x.  z ) )  =  ( ( abs `  A
)  x.  ( abs `  z ) ) )
9291oveq1d 6285 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  x.  z )
)  x.  B )  =  ( ( ( abs `  A )  x.  ( abs `  z
) )  x.  B
) )
9368recnd 9611 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  z )  e.  CC )
9451recnd 9611 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  B  e.  CC )
9570, 93, 94mul32d 9779 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  ( abs `  z ) )  x.  B )  =  ( ( ( abs `  A
)  x.  B )  x.  ( abs `  z
) ) )
9692, 95eqtrd 2495 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  x.  z )
)  x.  B )  =  ( ( ( abs `  A )  x.  B )  x.  ( abs `  z
) ) )
9790, 96breqtrrd 4465 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  B )  x.  ( ( abs `  A )  /  2
) )  <  (
( abs `  ( A  x.  z )
)  x.  B ) )
9848, 59, 52, 67, 97lelttrd 9729 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <  ( ( abs `  ( A  x.  z )
)  x.  B ) )
9946, 48, 52, 54, 98lttrd 9732 . . . . . 6  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  < 
( ( abs `  ( A  x.  z )
)  x.  B ) )
10021, 23absrpcld 13364 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  x.  z ) )  e.  RR+ )
10146, 51, 100ltdivmuld 11306 . . . . . 6  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) )  < 
B  <->  ( abs `  ( A  -  z )
)  <  ( ( abs `  ( A  x.  z ) )  x.  B ) ) )
10299, 101mpbird 232 . . . . 5  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) )  < 
B )
10342, 102eqbrtrd 4459 . . . 4  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( 1  /  z )  -  ( 1  /  A
) ) )  < 
B )
104103expr 613 . . 3  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  z  e.  ( CC  \  {
0 } ) )  ->  ( ( abs `  ( z  -  A
) )  <  T  ->  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
105104ralrimiva 2868 . 2  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  T  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
106 breq2 4443 . . . . 5  |-  ( y  =  T  ->  (
( abs `  (
z  -  A ) )  <  y  <->  ( abs `  ( z  -  A
) )  <  T
) )
107106imbi1d 315 . . . 4  |-  ( y  =  T  ->  (
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B )  <-> 
( ( abs `  (
z  -  A ) )  <  T  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) ) )
108107ralbidv 2893 . . 3  |-  ( y  =  T  ->  ( A. z  e.  ( CC  \  { 0 } ) ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B )  <->  A. z  e.  ( CC  \  { 0 } ) ( ( abs `  ( z  -  A
) )  <  T  ->  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) ) )
109108rspcev 3207 . 2  |-  ( ( T  e.  RR+  /\  A. z  e.  ( CC  \  { 0 } ) ( ( abs `  (
z  -  A ) )  <  T  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )  ->  E. y  e.  RR+  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
11014, 105, 109syl2anc 659 1  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   E.wrex 2805    \ cdif 3458   ifcif 3929   {csn 4016   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    x. cmul 9486    < clt 9617    <_ cle 9618    - cmin 9796    / cdiv 10202   2c2 10581   RR+crp 11221   abscabs 13152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-seq 12093  df-exp 12152  df-cj 13017  df-re 13018  df-im 13019  df-sqrt 13153  df-abs 13154
This theorem is referenced by:  rlimdiv  13553  divcn  21541  climrec  31851
  Copyright terms: Public domain W3C validator