MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recclnq Structured version   Visualization version   Unicode version

Theorem recclnq 9409
Description: Closure law for positive fraction reciprocal. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
recclnq  |-  ( A  e.  Q.  ->  ( *Q `  A )  e. 
Q. )

Proof of Theorem recclnq
StepHypRef Expression
1 recidnq 9408 . . . 4  |-  ( A  e.  Q.  ->  ( A  .Q  ( *Q `  A ) )  =  1Q )
2 1nq 9371 . . . 4  |-  1Q  e.  Q.
31, 2syl6eqel 2557 . . 3  |-  ( A  e.  Q.  ->  ( A  .Q  ( *Q `  A ) )  e. 
Q. )
4 mulnqf 9392 . . . . 5  |-  .Q  :
( Q.  X.  Q. )
--> Q.
54fdmi 5746 . . . 4  |-  dom  .Q  =  ( Q.  X.  Q. )
6 0nnq 9367 . . . 4  |-  -.  (/)  e.  Q.
75, 6ndmovrcl 6474 . . 3  |-  ( ( A  .Q  ( *Q
`  A ) )  e.  Q.  ->  ( A  e.  Q.  /\  ( *Q `  A )  e. 
Q. ) )
83, 7syl 17 . 2  |-  ( A  e.  Q.  ->  ( A  e.  Q.  /\  ( *Q `  A )  e. 
Q. ) )
98simprd 470 1  |-  ( A  e.  Q.  ->  ( *Q `  A )  e. 
Q. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    e. wcel 1904    X. cxp 4837   ` cfv 5589  (class class class)co 6308   Q.cnq 9295   1Qc1q 9296    .Q cmq 9299   *Qcrq 9300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-omul 7205  df-er 7381  df-ni 9315  df-mi 9317  df-lti 9318  df-mpq 9352  df-enq 9354  df-nq 9355  df-erq 9356  df-mq 9358  df-1nq 9359  df-rq 9360
This theorem is referenced by:  recrecnq  9410  dmrecnq  9411  halfnq  9419  ltrnq  9422  mulclprlem  9462  prlem934  9476  prlem936  9490  reclem2pr  9491  reclem3pr  9492  reclem4pr  9493
  Copyright terms: Public domain W3C validator