MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recan Structured version   Unicode version

Theorem recan 13251
Description: Cancellation law involving the real part of a complex number. (Contributed by NM, 12-May-2005.)
Assertion
Ref Expression
recan  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A. x  e.  CC  ( Re `  ( x  x.  A
) )  =  ( Re `  ( x  x.  B ) )  <-> 
A  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem recan
StepHypRef Expression
1 ax-1cn 9539 . . . . 5  |-  1  e.  CC
2 oveq1 6277 . . . . . . . 8  |-  ( x  =  1  ->  (
x  x.  A )  =  ( 1  x.  A ) )
32fveq2d 5852 . . . . . . 7  |-  ( x  =  1  ->  (
Re `  ( x  x.  A ) )  =  ( Re `  (
1  x.  A ) ) )
4 oveq1 6277 . . . . . . . 8  |-  ( x  =  1  ->  (
x  x.  B )  =  ( 1  x.  B ) )
54fveq2d 5852 . . . . . . 7  |-  ( x  =  1  ->  (
Re `  ( x  x.  B ) )  =  ( Re `  (
1  x.  B ) ) )
63, 5eqeq12d 2476 . . . . . 6  |-  ( x  =  1  ->  (
( Re `  (
x  x.  A ) )  =  ( Re
`  ( x  x.  B ) )  <->  ( Re `  ( 1  x.  A
) )  =  ( Re `  ( 1  x.  B ) ) ) )
76rspcv 3203 . . . . 5  |-  ( 1  e.  CC  ->  ( A. x  e.  CC  ( Re `  ( x  x.  A ) )  =  ( Re `  ( x  x.  B
) )  ->  (
Re `  ( 1  x.  A ) )  =  ( Re `  (
1  x.  B ) ) ) )
81, 7ax-mp 5 . . . 4  |-  ( A. x  e.  CC  (
Re `  ( x  x.  A ) )  =  ( Re `  (
x  x.  B ) )  ->  ( Re `  ( 1  x.  A
) )  =  ( Re `  ( 1  x.  B ) ) )
9 negicn 9812 . . . . . 6  |-  -u _i  e.  CC
10 oveq1 6277 . . . . . . . . 9  |-  ( x  =  -u _i  ->  (
x  x.  A )  =  ( -u _i  x.  A ) )
1110fveq2d 5852 . . . . . . . 8  |-  ( x  =  -u _i  ->  (
Re `  ( x  x.  A ) )  =  ( Re `  ( -u _i  x.  A ) ) )
12 oveq1 6277 . . . . . . . . 9  |-  ( x  =  -u _i  ->  (
x  x.  B )  =  ( -u _i  x.  B ) )
1312fveq2d 5852 . . . . . . . 8  |-  ( x  =  -u _i  ->  (
Re `  ( x  x.  B ) )  =  ( Re `  ( -u _i  x.  B ) ) )
1411, 13eqeq12d 2476 . . . . . . 7  |-  ( x  =  -u _i  ->  (
( Re `  (
x  x.  A ) )  =  ( Re
`  ( x  x.  B ) )  <->  ( Re `  ( -u _i  x.  A ) )  =  ( Re `  ( -u _i  x.  B ) ) ) )
1514rspcv 3203 . . . . . 6  |-  ( -u _i  e.  CC  ->  ( A. x  e.  CC  ( Re `  ( x  x.  A ) )  =  ( Re `  ( x  x.  B
) )  ->  (
Re `  ( -u _i  x.  A ) )  =  ( Re `  ( -u _i  x.  B ) ) ) )
169, 15ax-mp 5 . . . . 5  |-  ( A. x  e.  CC  (
Re `  ( x  x.  A ) )  =  ( Re `  (
x  x.  B ) )  ->  ( Re `  ( -u _i  x.  A ) )  =  ( Re `  ( -u _i  x.  B ) ) )
1716oveq2d 6286 . . . 4  |-  ( A. x  e.  CC  (
Re `  ( x  x.  A ) )  =  ( Re `  (
x  x.  B ) )  ->  ( _i  x.  ( Re `  ( -u _i  x.  A ) ) )  =  ( _i  x.  ( Re
`  ( -u _i  x.  B ) ) ) )
188, 17oveq12d 6288 . . 3  |-  ( A. x  e.  CC  (
Re `  ( x  x.  A ) )  =  ( Re `  (
x  x.  B ) )  ->  ( (
Re `  ( 1  x.  A ) )  +  ( _i  x.  (
Re `  ( -u _i  x.  A ) ) ) )  =  ( ( Re `  ( 1  x.  B ) )  +  ( _i  x.  ( Re `  ( -u _i  x.  B ) ) ) ) )
19 replim 13031 . . . . 5  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
20 mulid2 9583 . . . . . . . 8  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
2120eqcomd 2462 . . . . . . 7  |-  ( A  e.  CC  ->  A  =  ( 1  x.  A ) )
2221fveq2d 5852 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  =  ( Re `  ( 1  x.  A
) ) )
23 imre 13023 . . . . . . 7  |-  ( A  e.  CC  ->  (
Im `  A )  =  ( Re `  ( -u _i  x.  A
) ) )
2423oveq2d 6286 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  =  ( _i  x.  (
Re `  ( -u _i  x.  A ) ) ) )
2522, 24oveq12d 6288 . . . . 5  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  =  ( ( Re
`  ( 1  x.  A ) )  +  ( _i  x.  (
Re `  ( -u _i  x.  A ) ) ) ) )
2619, 25eqtrd 2495 . . . 4  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  ( 1  x.  A ) )  +  ( _i  x.  (
Re `  ( -u _i  x.  A ) ) ) ) )
27 replim 13031 . . . . 5  |-  ( B  e.  CC  ->  B  =  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) )
28 mulid2 9583 . . . . . . . 8  |-  ( B  e.  CC  ->  (
1  x.  B )  =  B )
2928eqcomd 2462 . . . . . . 7  |-  ( B  e.  CC  ->  B  =  ( 1  x.  B ) )
3029fveq2d 5852 . . . . . 6  |-  ( B  e.  CC  ->  (
Re `  B )  =  ( Re `  ( 1  x.  B
) ) )
31 imre 13023 . . . . . . 7  |-  ( B  e.  CC  ->  (
Im `  B )  =  ( Re `  ( -u _i  x.  B
) ) )
3231oveq2d 6286 . . . . . 6  |-  ( B  e.  CC  ->  (
_i  x.  ( Im `  B ) )  =  ( _i  x.  (
Re `  ( -u _i  x.  B ) ) ) )
3330, 32oveq12d 6288 . . . . 5  |-  ( B  e.  CC  ->  (
( Re `  B
)  +  ( _i  x.  ( Im `  B ) ) )  =  ( ( Re
`  ( 1  x.  B ) )  +  ( _i  x.  (
Re `  ( -u _i  x.  B ) ) ) ) )
3427, 33eqtrd 2495 . . . 4  |-  ( B  e.  CC  ->  B  =  ( ( Re
`  ( 1  x.  B ) )  +  ( _i  x.  (
Re `  ( -u _i  x.  B ) ) ) ) )
3526, 34eqeqan12d 2477 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  B  <-> 
( ( Re `  ( 1  x.  A
) )  +  ( _i  x.  ( Re
`  ( -u _i  x.  A ) ) ) )  =  ( ( Re `  ( 1  x.  B ) )  +  ( _i  x.  ( Re `  ( -u _i  x.  B ) ) ) ) ) )
3618, 35syl5ibr 221 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A. x  e.  CC  ( Re `  ( x  x.  A
) )  =  ( Re `  ( x  x.  B ) )  ->  A  =  B ) )
37 oveq2 6278 . . . 4  |-  ( A  =  B  ->  (
x  x.  A )  =  ( x  x.  B ) )
3837fveq2d 5852 . . 3  |-  ( A  =  B  ->  (
Re `  ( x  x.  A ) )  =  ( Re `  (
x  x.  B ) ) )
3938ralrimivw 2869 . 2  |-  ( A  =  B  ->  A. x  e.  CC  ( Re `  ( x  x.  A
) )  =  ( Re `  ( x  x.  B ) ) )
4036, 39impbid1 203 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A. x  e.  CC  ( Re `  ( x  x.  A
) )  =  ( Re `  ( x  x.  B ) )  <-> 
A  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   ` cfv 5570  (class class class)co 6270   CCcc 9479   1c1 9482   _ici 9483    + caddc 9484    x. cmul 9486   -ucneg 9797   Recre 13012   Imcim 13013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-po 4789  df-so 4790  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-2 10590  df-cj 13014  df-re 13015  df-im 13016
This theorem is referenced by:  lnopunilem2  27128
  Copyright terms: Public domain W3C validator