Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  re2luk1 Structured version   Unicode version

Theorem re2luk1 1583
 Description: luk-1 1473 derived from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
re2luk1

Proof of Theorem re2luk1
StepHypRef Expression
1 rb-imdf 1568 . . . 4
21rblem7 1581 . . 3
3 rb-imdf 1568 . . . . . . . 8
43rblem6 1580 . . . . . . 7
5 rb-ax2 1571 . . . . . . . 8
6 rb-ax4 1573 . . . . . . . . . 10
7 rb-ax3 1572 . . . . . . . . . 10
86, 7rbsyl 1574 . . . . . . . . 9
9 rb-ax4 1573 . . . . . . . . . . 11
10 rb-ax3 1572 . . . . . . . . . . 11
119, 10rbsyl 1574 . . . . . . . . . 10
12 rb-ax2 1571 . . . . . . . . . 10
1311, 12anmp 1569 . . . . . . . . 9
148, 13rblem1 1575 . . . . . . . 8
155, 14rbsyl 1574 . . . . . . 7
164, 15anmp 1569 . . . . . 6
17 rb-imdf 1568 . . . . . . 7
1817rblem7 1581 . . . . . 6
1916, 18rblem1 1575 . . . . 5
20 rb-ax1 1570 . . . . . 6
21 rb-ax2 1571 . . . . . . 7
22 rb-ax4 1573 . . . . . . . . . 10
23 rb-ax3 1572 . . . . . . . . . 10
2422, 23rbsyl 1574 . . . . . . . . 9
25 rb-ax4 1573 . . . . . . . . . 10
26 rb-ax3 1572 . . . . . . . . . 10
2725, 26rbsyl 1574 . . . . . . . . 9
2824, 27, 11rblem4 1578 . . . . . . . 8
29 rb-ax2 1571 . . . . . . . 8
3028, 29rbsyl 1574 . . . . . . 7
3121, 30rbsyl 1574 . . . . . 6
3220, 31anmp 1569 . . . . 5
3319, 32rbsyl 1574 . . . 4
34 rb-imdf 1568 . . . . 5
3534rblem6 1580 . . . 4
3633, 35rbsyl 1574 . . 3
372, 36rbsyl 1574 . 2
38 rb-imdf 1568 . . 3
3938rblem7 1581 . 2
4037, 39anmp 1569 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wo 368 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator