Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  re1tbw4 Structured version   Unicode version

Theorem re1tbw4 1625
 Description: tbw-ax4 1580 rederived from merco2 1613. This theorem, along with re1tbw1 1622, re1tbw2 1623, and re1tbw3 1624, shows that merco2 1613, along with ax-mp 5, can be used as a complete axiomatization of propositional calculus. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
re1tbw4

Proof of Theorem re1tbw4
StepHypRef Expression
1 re1tbw3 1624 . . 3
2 re1tbw2 1623 . . . 4
3 re1tbw1 1622 . . . 4
42, 3ax-mp 5 . . 3
51, 4ax-mp 5 . 2
6 re1tbw3 1624 . . . . 5
7 re1tbw2 1623 . . . . . 6
8 re1tbw1 1622 . . . . . 6
97, 8ax-mp 5 . . . . 5
106, 9ax-mp 5 . . . 4
11 mercolem3 1616 . . . . 5
12 merco2 1613 . . . . 5
1311, 12ax-mp 5 . . . 4
1410, 13ax-mp 5 . . 3
155, 14ax-mp 5 . 2
165, 15ax-mp 5 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wfal 1442 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 188  df-tru 1440  df-fal 1443 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator