MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgsucmptf Structured version   Visualization version   Unicode version

Theorem rdgsucmptf 7151
Description: The value of the recursive definition generator at a successor (special case where the characteristic function uses the map operation). (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
rdgsucmptf.1  |-  F/_ x A
rdgsucmptf.2  |-  F/_ x B
rdgsucmptf.3  |-  F/_ x D
rdgsucmptf.4  |-  F  =  rec ( ( x  e.  _V  |->  C ) ,  A )
rdgsucmptf.5  |-  ( x  =  ( F `  B )  ->  C  =  D )
Assertion
Ref Expression
rdgsucmptf  |-  ( ( B  e.  On  /\  D  e.  V )  ->  ( F `  suc  B )  =  D )

Proof of Theorem rdgsucmptf
StepHypRef Expression
1 rdgsuc 7147 . . 3  |-  ( B  e.  On  ->  ( rec ( ( x  e. 
_V  |->  C ) ,  A ) `  suc  B )  =  ( ( x  e.  _V  |->  C ) `  ( rec ( ( x  e. 
_V  |->  C ) ,  A ) `  B
) ) )
2 rdgsucmptf.4 . . . 4  |-  F  =  rec ( ( x  e.  _V  |->  C ) ,  A )
32fveq1i 5871 . . 3  |-  ( F `
 suc  B )  =  ( rec (
( x  e.  _V  |->  C ) ,  A
) `  suc  B )
42fveq1i 5871 . . . 4  |-  ( F `
 B )  =  ( rec ( ( x  e.  _V  |->  C ) ,  A ) `
 B )
54fveq2i 5873 . . 3  |-  ( ( x  e.  _V  |->  C ) `  ( F `
 B ) )  =  ( ( x  e.  _V  |->  C ) `
 ( rec (
( x  e.  _V  |->  C ) ,  A
) `  B )
)
61, 3, 53eqtr4g 2512 . 2  |-  ( B  e.  On  ->  ( F `  suc  B )  =  ( ( x  e.  _V  |->  C ) `
 ( F `  B ) ) )
7 fvex 5880 . . 3  |-  ( F `
 B )  e. 
_V
8 nfmpt1 4495 . . . . . . 7  |-  F/_ x
( x  e.  _V  |->  C )
9 rdgsucmptf.1 . . . . . . 7  |-  F/_ x A
108, 9nfrdg 7137 . . . . . 6  |-  F/_ x rec ( ( x  e. 
_V  |->  C ) ,  A )
112, 10nfcxfr 2592 . . . . 5  |-  F/_ x F
12 rdgsucmptf.2 . . . . 5  |-  F/_ x B
1311, 12nffv 5877 . . . 4  |-  F/_ x
( F `  B
)
14 rdgsucmptf.3 . . . 4  |-  F/_ x D
15 rdgsucmptf.5 . . . 4  |-  ( x  =  ( F `  B )  ->  C  =  D )
16 eqid 2453 . . . 4  |-  ( x  e.  _V  |->  C )  =  ( x  e. 
_V  |->  C )
1713, 14, 15, 16fvmptf 5971 . . 3  |-  ( ( ( F `  B
)  e.  _V  /\  D  e.  V )  ->  ( ( x  e. 
_V  |->  C ) `  ( F `  B ) )  =  D )
187, 17mpan 677 . 2  |-  ( D  e.  V  ->  (
( x  e.  _V  |->  C ) `  ( F `  B )
)  =  D )
196, 18sylan9eq 2507 1  |-  ( ( B  e.  On  /\  D  e.  V )  ->  ( F `  suc  B )  =  D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1446    e. wcel 1889   F/_wnfc 2581   _Vcvv 3047    |-> cmpt 4464   Oncon0 5426   suc csuc 5428   ` cfv 5585   reccrdg 7132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-ral 2744  df-rex 2745  df-reu 2746  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-wrecs 7033  df-recs 7095  df-rdg 7133
This theorem is referenced by:  rdgsucmpt2  7153  rdgsucmpt  7154
  Copyright terms: Public domain W3C validator