Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgprc0 Structured version   Unicode version

Theorem rdgprc0 27607
Description: The value of the recursive definition generator at  (/) when the base value is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rdgprc0  |-  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  (/) )  =  (/) )

Proof of Theorem rdgprc0
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 0elon 4772 . . . 4  |-  (/)  e.  On
2 rdgval 6876 . . . 4  |-  ( (/)  e.  On  ->  ( rec ( F ,  I ) `
 (/) )  =  ( ( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) `  ( rec ( F ,  I
)  |`  (/) ) ) )
31, 2ax-mp 5 . . 3  |-  ( rec ( F ,  I
) `  (/) )  =  ( ( g  e. 
_V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) ) `  ( rec ( F ,  I
)  |`  (/) ) )
4 res0 5115 . . . 4  |-  ( rec ( F ,  I
)  |`  (/) )  =  (/)
54fveq2i 5694 . . 3  |-  ( ( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) `  ( rec ( F ,  I
)  |`  (/) ) )  =  ( ( g  e. 
_V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) ) `  (/) )
63, 5eqtri 2463 . 2  |-  ( rec ( F ,  I
) `  (/) )  =  ( ( g  e. 
_V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) ) `  (/) )
7 eqeq1 2449 . . . . . . . 8  |-  ( g  =  (/)  ->  ( g  =  (/)  <->  (/)  =  (/) ) )
8 dmeq 5040 . . . . . . . . . 10  |-  ( g  =  (/)  ->  dom  g  =  dom  (/) )
9 limeq 4731 . . . . . . . . . 10  |-  ( dom  g  =  dom  (/)  ->  ( Lim  dom  g  <->  Lim  dom  (/) ) )
108, 9syl 16 . . . . . . . . 9  |-  ( g  =  (/)  ->  ( Lim 
dom  g  <->  Lim  dom  (/) ) )
11 rneq 5065 . . . . . . . . . 10  |-  ( g  =  (/)  ->  ran  g  =  ran  (/) )
1211unieqd 4101 . . . . . . . . 9  |-  ( g  =  (/)  ->  U. ran  g  =  U. ran  (/) )
13 id 22 . . . . . . . . . . 11  |-  ( g  =  (/)  ->  g  =  (/) )
148unieqd 4101 . . . . . . . . . . 11  |-  ( g  =  (/)  ->  U. dom  g  =  U. dom  (/) )
1513, 14fveq12d 5697 . . . . . . . . . 10  |-  ( g  =  (/)  ->  ( g `
 U. dom  g
)  =  ( (/) ` 
U. dom  (/) ) )
1615fveq2d 5695 . . . . . . . . 9  |-  ( g  =  (/)  ->  ( F `
 ( g `  U. dom  g ) )  =  ( F `  ( (/) `  U. dom  (/) ) ) )
1710, 12, 16ifbieq12d 3816 . . . . . . . 8  |-  ( g  =  (/)  ->  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) )  =  if ( Lim  dom  (/)
,  U. ran  (/) ,  ( F `  ( (/) ` 
U. dom  (/) ) ) ) )
187, 17ifbieq2d 3814 . . . . . . 7  |-  ( g  =  (/)  ->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) )  =  if (
(/)  =  (/) ,  I ,  if ( Lim  dom  (/)
,  U. ran  (/) ,  ( F `  ( (/) ` 
U. dom  (/) ) ) ) ) )
1918eleq1d 2509 . . . . . 6  |-  ( g  =  (/)  ->  ( if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) )  e.  _V  <->  if ( (/)  =  (/) ,  I ,  if ( Lim  dom  (/)
,  U. ran  (/) ,  ( F `  ( (/) ` 
U. dom  (/) ) ) ) )  e.  _V ) )
20 eqid 2443 . . . . . . 7  |-  ( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) )  =  ( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) )
2120dmmpt 5333 . . . . . 6  |-  dom  (
g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) )  =  { g  e.  _V  |  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) )  e.  _V }
2219, 21elrab2 3119 . . . . 5  |-  ( (/)  e.  dom  ( g  e. 
_V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) )  <->  ( (/)  e.  _V  /\  if ( (/)  =  (/) ,  I ,  if ( Lim  dom  (/) ,  U. ran  (/) ,  ( F `
 ( (/) `  U. dom  (/) ) ) ) )  e.  _V )
)
23 eqid 2443 . . . . . . . . 9  |-  (/)  =  (/)
2423iftruei 3798 . . . . . . . 8  |-  if (
(/)  =  (/) ,  I ,  if ( Lim  dom  (/)
,  U. ran  (/) ,  ( F `  ( (/) ` 
U. dom  (/) ) ) ) )  =  I
2524eleq1i 2506 . . . . . . 7  |-  ( if ( (/)  =  (/) ,  I ,  if ( Lim  dom  (/)
,  U. ran  (/) ,  ( F `  ( (/) ` 
U. dom  (/) ) ) ) )  e.  _V  <->  I  e.  _V )
2625biimpi 194 . . . . . 6  |-  ( if ( (/)  =  (/) ,  I ,  if ( Lim  dom  (/)
,  U. ran  (/) ,  ( F `  ( (/) ` 
U. dom  (/) ) ) ) )  e.  _V  ->  I  e.  _V )
2726adantl 466 . . . . 5  |-  ( (
(/)  e.  _V  /\  if ( (/)  =  (/) ,  I ,  if ( Lim  dom  (/)
,  U. ran  (/) ,  ( F `  ( (/) ` 
U. dom  (/) ) ) ) )  e.  _V )  ->  I  e.  _V )
2822, 27sylbi 195 . . . 4  |-  ( (/)  e.  dom  ( g  e. 
_V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) )  ->  I  e.  _V )
2928con3i 135 . . 3  |-  ( -.  I  e.  _V  ->  -.  (/)  e.  dom  ( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) ) )
30 ndmfv 5714 . . 3  |-  ( -.  (/)  e.  dom  ( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) )  ->  (
( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) `  (/) )  =  (/) )
3129, 30syl 16 . 2  |-  ( -.  I  e.  _V  ->  ( ( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) `  (/) )  =  (/) )
326, 31syl5eq 2487 1  |-  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  (/) )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2972   (/)c0 3637   ifcif 3791   U.cuni 4091    e. cmpt 4350   Oncon0 4719   Lim wlim 4720   dom cdm 4840   ran crn 4841    |` cres 4842   ` cfv 5418   reccrdg 6865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-recs 6832  df-rdg 6866
This theorem is referenced by:  rdgprc  27608
  Copyright terms: Public domain W3C validator