Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgprc0 Structured version   Unicode version

Theorem rdgprc0 29153
Description: The value of the recursive definition generator at  (/) when the base value is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rdgprc0  |-  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  (/) )  =  (/) )

Proof of Theorem rdgprc0
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 0elon 4937 . . . 4  |-  (/)  e.  On
2 rdgval 7098 . . . 4  |-  ( (/)  e.  On  ->  ( rec ( F ,  I ) `
 (/) )  =  ( ( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) `  ( rec ( F ,  I
)  |`  (/) ) ) )
31, 2ax-mp 5 . . 3  |-  ( rec ( F ,  I
) `  (/) )  =  ( ( g  e. 
_V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) ) `  ( rec ( F ,  I
)  |`  (/) ) )
4 res0 5284 . . . 4  |-  ( rec ( F ,  I
)  |`  (/) )  =  (/)
54fveq2i 5875 . . 3  |-  ( ( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) `  ( rec ( F ,  I
)  |`  (/) ) )  =  ( ( g  e. 
_V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) ) `  (/) )
63, 5eqtri 2496 . 2  |-  ( rec ( F ,  I
) `  (/) )  =  ( ( g  e. 
_V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) ) `  (/) )
7 eqeq1 2471 . . . . . . . 8  |-  ( g  =  (/)  ->  ( g  =  (/)  <->  (/)  =  (/) ) )
8 dmeq 5209 . . . . . . . . . 10  |-  ( g  =  (/)  ->  dom  g  =  dom  (/) )
9 limeq 4896 . . . . . . . . . 10  |-  ( dom  g  =  dom  (/)  ->  ( Lim  dom  g  <->  Lim  dom  (/) ) )
108, 9syl 16 . . . . . . . . 9  |-  ( g  =  (/)  ->  ( Lim 
dom  g  <->  Lim  dom  (/) ) )
11 rneq 5234 . . . . . . . . . 10  |-  ( g  =  (/)  ->  ran  g  =  ran  (/) )
1211unieqd 4261 . . . . . . . . 9  |-  ( g  =  (/)  ->  U. ran  g  =  U. ran  (/) )
13 id 22 . . . . . . . . . . 11  |-  ( g  =  (/)  ->  g  =  (/) )
148unieqd 4261 . . . . . . . . . . 11  |-  ( g  =  (/)  ->  U. dom  g  =  U. dom  (/) )
1513, 14fveq12d 5878 . . . . . . . . . 10  |-  ( g  =  (/)  ->  ( g `
 U. dom  g
)  =  ( (/) ` 
U. dom  (/) ) )
1615fveq2d 5876 . . . . . . . . 9  |-  ( g  =  (/)  ->  ( F `
 ( g `  U. dom  g ) )  =  ( F `  ( (/) `  U. dom  (/) ) ) )
1710, 12, 16ifbieq12d 3972 . . . . . . . 8  |-  ( g  =  (/)  ->  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) )  =  if ( Lim  dom  (/)
,  U. ran  (/) ,  ( F `  ( (/) ` 
U. dom  (/) ) ) ) )
187, 17ifbieq2d 3970 . . . . . . 7  |-  ( g  =  (/)  ->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) )  =  if (
(/)  =  (/) ,  I ,  if ( Lim  dom  (/)
,  U. ran  (/) ,  ( F `  ( (/) ` 
U. dom  (/) ) ) ) ) )
1918eleq1d 2536 . . . . . 6  |-  ( g  =  (/)  ->  ( if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) )  e.  _V  <->  if ( (/)  =  (/) ,  I ,  if ( Lim  dom  (/)
,  U. ran  (/) ,  ( F `  ( (/) ` 
U. dom  (/) ) ) ) )  e.  _V ) )
20 eqid 2467 . . . . . . 7  |-  ( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) )  =  ( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) )
2120dmmpt 5508 . . . . . 6  |-  dom  (
g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) )  =  { g  e.  _V  |  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) )  e.  _V }
2219, 21elrab2 3268 . . . . 5  |-  ( (/)  e.  dom  ( g  e. 
_V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) )  <->  ( (/)  e.  _V  /\  if ( (/)  =  (/) ,  I ,  if ( Lim  dom  (/) ,  U. ran  (/) ,  ( F `
 ( (/) `  U. dom  (/) ) ) ) )  e.  _V )
)
23 eqid 2467 . . . . . . . . 9  |-  (/)  =  (/)
2423iftruei 3952 . . . . . . . 8  |-  if (
(/)  =  (/) ,  I ,  if ( Lim  dom  (/)
,  U. ran  (/) ,  ( F `  ( (/) ` 
U. dom  (/) ) ) ) )  =  I
2524eleq1i 2544 . . . . . . 7  |-  ( if ( (/)  =  (/) ,  I ,  if ( Lim  dom  (/)
,  U. ran  (/) ,  ( F `  ( (/) ` 
U. dom  (/) ) ) ) )  e.  _V  <->  I  e.  _V )
2625biimpi 194 . . . . . 6  |-  ( if ( (/)  =  (/) ,  I ,  if ( Lim  dom  (/)
,  U. ran  (/) ,  ( F `  ( (/) ` 
U. dom  (/) ) ) ) )  e.  _V  ->  I  e.  _V )
2726adantl 466 . . . . 5  |-  ( (
(/)  e.  _V  /\  if ( (/)  =  (/) ,  I ,  if ( Lim  dom  (/)
,  U. ran  (/) ,  ( F `  ( (/) ` 
U. dom  (/) ) ) ) )  e.  _V )  ->  I  e.  _V )
2822, 27sylbi 195 . . . 4  |-  ( (/)  e.  dom  ( g  e. 
_V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) )  ->  I  e.  _V )
2928con3i 135 . . 3  |-  ( -.  I  e.  _V  ->  -.  (/)  e.  dom  ( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) ) )
30 ndmfv 5896 . . 3  |-  ( -.  (/)  e.  dom  ( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) )  ->  (
( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) `  (/) )  =  (/) )
3129, 30syl 16 . 2  |-  ( -.  I  e.  _V  ->  ( ( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) `  (/) )  =  (/) )
326, 31syl5eq 2520 1  |-  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  (/) )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3118   (/)c0 3790   ifcif 3945   U.cuni 4251    |-> cmpt 4511   Oncon0 4884   Lim wlim 4885   dom cdm 5005   ran crn 5006    |` cres 5007   ` cfv 5594   reccrdg 7087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-recs 7054  df-rdg 7088
This theorem is referenced by:  rdgprc  29154
  Copyright terms: Public domain W3C validator