Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgprc Structured version   Unicode version

Theorem rdgprc 29161
Description: The value of the recursive definition generator when 
I is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rdgprc  |-  ( -.  I  e.  _V  ->  rec ( F ,  I
)  =  rec ( F ,  (/) ) )

Proof of Theorem rdgprc
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5872 . . . . . . 7  |-  ( z  =  (/)  ->  ( rec ( F ,  I
) `  z )  =  ( rec ( F ,  I ) `  (/) ) )
2 fveq2 5872 . . . . . . 7  |-  ( z  =  (/)  ->  ( rec ( F ,  (/) ) `  z )  =  ( rec ( F ,  (/) ) `  (/) ) )
31, 2eqeq12d 2489 . . . . . 6  |-  ( z  =  (/)  ->  ( ( rec ( F ,  I ) `  z
)  =  ( rec ( F ,  (/) ) `  z )  <->  ( rec ( F ,  I ) `  (/) )  =  ( rec ( F ,  (/) ) `  (/) ) ) )
43imbi2d 316 . . . . 5  |-  ( z  =  (/)  ->  ( ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  z )  =  ( rec ( F ,  (/) ) `  z ) )  <->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `
 (/) )  =  ( rec ( F ,  (/) ) `  (/) ) ) ) )
5 fveq2 5872 . . . . . . 7  |-  ( z  =  y  ->  ( rec ( F ,  I
) `  z )  =  ( rec ( F ,  I ) `  y ) )
6 fveq2 5872 . . . . . . 7  |-  ( z  =  y  ->  ( rec ( F ,  (/) ) `  z )  =  ( rec ( F ,  (/) ) `  y ) )
75, 6eqeq12d 2489 . . . . . 6  |-  ( z  =  y  ->  (
( rec ( F ,  I ) `  z )  =  ( rec ( F ,  (/) ) `  z )  <-> 
( rec ( F ,  I ) `  y )  =  ( rec ( F ,  (/) ) `  y ) ) )
87imbi2d 316 . . . . 5  |-  ( z  =  y  ->  (
( -.  I  e. 
_V  ->  ( rec ( F ,  I ) `  z )  =  ( rec ( F ,  (/) ) `  z ) )  <->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `
 y )  =  ( rec ( F ,  (/) ) `  y
) ) ) )
9 fveq2 5872 . . . . . . 7  |-  ( z  =  suc  y  -> 
( rec ( F ,  I ) `  z )  =  ( rec ( F ,  I ) `  suc  y ) )
10 fveq2 5872 . . . . . . 7  |-  ( z  =  suc  y  -> 
( rec ( F ,  (/) ) `  z
)  =  ( rec ( F ,  (/) ) `  suc  y ) )
119, 10eqeq12d 2489 . . . . . 6  |-  ( z  =  suc  y  -> 
( ( rec ( F ,  I ) `  z )  =  ( rec ( F ,  (/) ) `  z )  <-> 
( rec ( F ,  I ) `  suc  y )  =  ( rec ( F ,  (/) ) `  suc  y
) ) )
1211imbi2d 316 . . . . 5  |-  ( z  =  suc  y  -> 
( ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `
 z )  =  ( rec ( F ,  (/) ) `  z
) )  <->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  suc  y )  =  ( rec ( F ,  (/) ) `  suc  y
) ) ) )
13 fveq2 5872 . . . . . . 7  |-  ( z  =  x  ->  ( rec ( F ,  I
) `  z )  =  ( rec ( F ,  I ) `  x ) )
14 fveq2 5872 . . . . . . 7  |-  ( z  =  x  ->  ( rec ( F ,  (/) ) `  z )  =  ( rec ( F ,  (/) ) `  x ) )
1513, 14eqeq12d 2489 . . . . . 6  |-  ( z  =  x  ->  (
( rec ( F ,  I ) `  z )  =  ( rec ( F ,  (/) ) `  z )  <-> 
( rec ( F ,  I ) `  x )  =  ( rec ( F ,  (/) ) `  x ) ) )
1615imbi2d 316 . . . . 5  |-  ( z  =  x  ->  (
( -.  I  e. 
_V  ->  ( rec ( F ,  I ) `  z )  =  ( rec ( F ,  (/) ) `  z ) )  <->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `
 x )  =  ( rec ( F ,  (/) ) `  x
) ) ) )
17 rdgprc0 29160 . . . . . 6  |-  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  (/) )  =  (/) )
18 0ex 4583 . . . . . . 7  |-  (/)  e.  _V
1918rdg0 7099 . . . . . 6  |-  ( rec ( F ,  (/) ) `  (/) )  =  (/)
2017, 19syl6eqr 2526 . . . . 5  |-  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  (/) )  =  ( rec ( F ,  (/) ) `  (/) ) )
21 fveq2 5872 . . . . . . 7  |-  ( ( rec ( F ,  I ) `  y
)  =  ( rec ( F ,  (/) ) `  y )  ->  ( F `  ( rec ( F ,  I
) `  y )
)  =  ( F `
 ( rec ( F ,  (/) ) `  y ) ) )
22 rdgsuc 7102 . . . . . . . 8  |-  ( y  e.  On  ->  ( rec ( F ,  I
) `  suc  y )  =  ( F `  ( rec ( F ,  I ) `  y
) ) )
23 rdgsuc 7102 . . . . . . . 8  |-  ( y  e.  On  ->  ( rec ( F ,  (/) ) `  suc  y )  =  ( F `  ( rec ( F ,  (/) ) `  y ) ) )
2422, 23eqeq12d 2489 . . . . . . 7  |-  ( y  e.  On  ->  (
( rec ( F ,  I ) `  suc  y )  =  ( rec ( F ,  (/) ) `  suc  y
)  <->  ( F `  ( rec ( F ,  I ) `  y
) )  =  ( F `  ( rec ( F ,  (/) ) `  y )
) ) )
2521, 24syl5ibr 221 . . . . . 6  |-  ( y  e.  On  ->  (
( rec ( F ,  I ) `  y )  =  ( rec ( F ,  (/) ) `  y )  ->  ( rec ( F ,  I ) `  suc  y )  =  ( rec ( F ,  (/) ) `  suc  y ) ) )
2625imim2d 52 . . . . 5  |-  ( y  e.  On  ->  (
( -.  I  e. 
_V  ->  ( rec ( F ,  I ) `  y )  =  ( rec ( F ,  (/) ) `  y ) )  ->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  suc  y )  =  ( rec ( F ,  (/) ) `  suc  y
) ) ) )
27 r19.21v 2872 . . . . . 6  |-  ( A. y  e.  z  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  y )  =  ( rec ( F ,  (/) ) `  y ) )  <->  ( -.  I  e.  _V  ->  A. y  e.  z  ( rec ( F ,  I ) `
 y )  =  ( rec ( F ,  (/) ) `  y
) ) )
28 limord 4943 . . . . . . . . 9  |-  ( Lim  z  ->  Ord  z )
29 ordsson 6620 . . . . . . . . 9  |-  ( Ord  z  ->  z  C_  On )
30 rdgfnon 7096 . . . . . . . . . 10  |-  rec ( F ,  I )  Fn  On
31 rdgfnon 7096 . . . . . . . . . 10  |-  rec ( F ,  (/) )  Fn  On
32 fvreseq 5990 . . . . . . . . . 10  |-  ( ( ( rec ( F ,  I )  Fn  On  /\  rec ( F ,  (/) )  Fn  On )  /\  z  C_  On )  ->  (
( rec ( F ,  I )  |`  z )  =  ( rec ( F ,  (/) )  |`  z )  <->  A. y  e.  z  ( rec ( F ,  I ) `  y
)  =  ( rec ( F ,  (/) ) `  y )
) )
3330, 31, 32mpanl12 682 . . . . . . . . 9  |-  ( z 
C_  On  ->  ( ( rec ( F ,  I )  |`  z
)  =  ( rec ( F ,  (/) )  |`  z )  <->  A. y  e.  z  ( rec ( F ,  I ) `
 y )  =  ( rec ( F ,  (/) ) `  y
) ) )
3428, 29, 333syl 20 . . . . . . . 8  |-  ( Lim  z  ->  ( ( rec ( F ,  I
)  |`  z )  =  ( rec ( F ,  (/) )  |`  z
)  <->  A. y  e.  z  ( rec ( F ,  I ) `  y )  =  ( rec ( F ,  (/) ) `  y ) ) )
35 rneq 5234 . . . . . . . . . . 11  |-  ( ( rec ( F ,  I )  |`  z
)  =  ( rec ( F ,  (/) )  |`  z )  ->  ran  ( rec ( F ,  I )  |`  z )  =  ran  ( rec ( F ,  (/) )  |`  z )
)
36 df-ima 5018 . . . . . . . . . . 11  |-  ( rec ( F ,  I
) " z )  =  ran  ( rec ( F ,  I
)  |`  z )
37 df-ima 5018 . . . . . . . . . . 11  |-  ( rec ( F ,  (/) ) " z )  =  ran  ( rec ( F ,  (/) )  |`  z )
3835, 36, 373eqtr4g 2533 . . . . . . . . . 10  |-  ( ( rec ( F ,  I )  |`  z
)  =  ( rec ( F ,  (/) )  |`  z )  -> 
( rec ( F ,  I ) "
z )  =  ( rec ( F ,  (/) ) " z ) )
3938unieqd 4261 . . . . . . . . 9  |-  ( ( rec ( F ,  I )  |`  z
)  =  ( rec ( F ,  (/) )  |`  z )  ->  U. ( rec ( F ,  I ) "
z )  =  U. ( rec ( F ,  (/) ) " z ) )
40 vex 3121 . . . . . . . . . 10  |-  z  e. 
_V
41 rdglim 7104 . . . . . . . . . . 11  |-  ( ( z  e.  _V  /\  Lim  z )  ->  ( rec ( F ,  I
) `  z )  =  U. ( rec ( F ,  I ) " z ) )
42 rdglim 7104 . . . . . . . . . . 11  |-  ( ( z  e.  _V  /\  Lim  z )  ->  ( rec ( F ,  (/) ) `  z )  =  U. ( rec ( F ,  (/) ) "
z ) )
4341, 42eqeq12d 2489 . . . . . . . . . 10  |-  ( ( z  e.  _V  /\  Lim  z )  ->  (
( rec ( F ,  I ) `  z )  =  ( rec ( F ,  (/) ) `  z )  <->  U. ( rec ( F ,  I ) "
z )  =  U. ( rec ( F ,  (/) ) " z ) ) )
4440, 43mpan 670 . . . . . . . . 9  |-  ( Lim  z  ->  ( ( rec ( F ,  I
) `  z )  =  ( rec ( F ,  (/) ) `  z )  <->  U. ( rec ( F ,  I
) " z )  =  U. ( rec ( F ,  (/) ) " z ) ) )
4539, 44syl5ibr 221 . . . . . . . 8  |-  ( Lim  z  ->  ( ( rec ( F ,  I
)  |`  z )  =  ( rec ( F ,  (/) )  |`  z
)  ->  ( rec ( F ,  I ) `
 z )  =  ( rec ( F ,  (/) ) `  z
) ) )
4634, 45sylbird 235 . . . . . . 7  |-  ( Lim  z  ->  ( A. y  e.  z  ( rec ( F ,  I
) `  y )  =  ( rec ( F ,  (/) ) `  y )  ->  ( rec ( F ,  I
) `  z )  =  ( rec ( F ,  (/) ) `  z ) ) )
4746imim2d 52 . . . . . 6  |-  ( Lim  z  ->  ( ( -.  I  e.  _V  ->  A. y  e.  z  ( rec ( F ,  I ) `  y )  =  ( rec ( F ,  (/) ) `  y ) )  ->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  z
)  =  ( rec ( F ,  (/) ) `  z )
) ) )
4827, 47syl5bi 217 . . . . 5  |-  ( Lim  z  ->  ( A. y  e.  z  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  y )  =  ( rec ( F ,  (/) ) `  y ) )  ->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  z
)  =  ( rec ( F ,  (/) ) `  z )
) ) )
494, 8, 12, 16, 20, 26, 48tfinds 6689 . . . 4  |-  ( x  e.  On  ->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  x )  =  ( rec ( F ,  (/) ) `  x ) ) )
5049com12 31 . . 3  |-  ( -.  I  e.  _V  ->  ( x  e.  On  ->  ( rec ( F ,  I ) `  x
)  =  ( rec ( F ,  (/) ) `  x )
) )
5150ralrimiv 2879 . 2  |-  ( -.  I  e.  _V  ->  A. x  e.  On  ( rec ( F ,  I
) `  x )  =  ( rec ( F ,  (/) ) `  x ) )
52 eqfnfv 5982 . . 3  |-  ( ( rec ( F ,  I )  Fn  On  /\ 
rec ( F ,  (/) )  Fn  On )  ->  ( rec ( F ,  I )  =  rec ( F ,  (/) )  <->  A. x  e.  On  ( rec ( F ,  I ) `  x
)  =  ( rec ( F ,  (/) ) `  x )
) )
5330, 31, 52mp2an 672 . 2  |-  ( rec ( F ,  I
)  =  rec ( F ,  (/) )  <->  A. x  e.  On  ( rec ( F ,  I ) `  x )  =  ( rec ( F ,  (/) ) `  x ) )
5451, 53sylibr 212 1  |-  ( -.  I  e.  _V  ->  rec ( F ,  I
)  =  rec ( F ,  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   _Vcvv 3118    C_ wss 3481   (/)c0 3790   U.cuni 4251   Ord word 4883   Oncon0 4884   Lim wlim 4885   suc csuc 4886   ran crn 5006    |` cres 5007   "cima 5008    Fn wfn 5589   ` cfv 5594   reccrdg 7087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-om 6696  df-recs 7054  df-rdg 7088
This theorem is referenced by:  dfrdg3  29163
  Copyright terms: Public domain W3C validator