Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgprc Structured version   Unicode version

Theorem rdgprc 27620
Description: The value of the recursive definition generator when 
I is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rdgprc  |-  ( -.  I  e.  _V  ->  rec ( F ,  I
)  =  rec ( F ,  (/) ) )

Proof of Theorem rdgprc
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5703 . . . . . . 7  |-  ( z  =  (/)  ->  ( rec ( F ,  I
) `  z )  =  ( rec ( F ,  I ) `  (/) ) )
2 fveq2 5703 . . . . . . 7  |-  ( z  =  (/)  ->  ( rec ( F ,  (/) ) `  z )  =  ( rec ( F ,  (/) ) `  (/) ) )
31, 2eqeq12d 2457 . . . . . 6  |-  ( z  =  (/)  ->  ( ( rec ( F ,  I ) `  z
)  =  ( rec ( F ,  (/) ) `  z )  <->  ( rec ( F ,  I ) `  (/) )  =  ( rec ( F ,  (/) ) `  (/) ) ) )
43imbi2d 316 . . . . 5  |-  ( z  =  (/)  ->  ( ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  z )  =  ( rec ( F ,  (/) ) `  z ) )  <->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `
 (/) )  =  ( rec ( F ,  (/) ) `  (/) ) ) ) )
5 fveq2 5703 . . . . . . 7  |-  ( z  =  y  ->  ( rec ( F ,  I
) `  z )  =  ( rec ( F ,  I ) `  y ) )
6 fveq2 5703 . . . . . . 7  |-  ( z  =  y  ->  ( rec ( F ,  (/) ) `  z )  =  ( rec ( F ,  (/) ) `  y ) )
75, 6eqeq12d 2457 . . . . . 6  |-  ( z  =  y  ->  (
( rec ( F ,  I ) `  z )  =  ( rec ( F ,  (/) ) `  z )  <-> 
( rec ( F ,  I ) `  y )  =  ( rec ( F ,  (/) ) `  y ) ) )
87imbi2d 316 . . . . 5  |-  ( z  =  y  ->  (
( -.  I  e. 
_V  ->  ( rec ( F ,  I ) `  z )  =  ( rec ( F ,  (/) ) `  z ) )  <->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `
 y )  =  ( rec ( F ,  (/) ) `  y
) ) ) )
9 fveq2 5703 . . . . . . 7  |-  ( z  =  suc  y  -> 
( rec ( F ,  I ) `  z )  =  ( rec ( F ,  I ) `  suc  y ) )
10 fveq2 5703 . . . . . . 7  |-  ( z  =  suc  y  -> 
( rec ( F ,  (/) ) `  z
)  =  ( rec ( F ,  (/) ) `  suc  y ) )
119, 10eqeq12d 2457 . . . . . 6  |-  ( z  =  suc  y  -> 
( ( rec ( F ,  I ) `  z )  =  ( rec ( F ,  (/) ) `  z )  <-> 
( rec ( F ,  I ) `  suc  y )  =  ( rec ( F ,  (/) ) `  suc  y
) ) )
1211imbi2d 316 . . . . 5  |-  ( z  =  suc  y  -> 
( ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `
 z )  =  ( rec ( F ,  (/) ) `  z
) )  <->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  suc  y )  =  ( rec ( F ,  (/) ) `  suc  y
) ) ) )
13 fveq2 5703 . . . . . . 7  |-  ( z  =  x  ->  ( rec ( F ,  I
) `  z )  =  ( rec ( F ,  I ) `  x ) )
14 fveq2 5703 . . . . . . 7  |-  ( z  =  x  ->  ( rec ( F ,  (/) ) `  z )  =  ( rec ( F ,  (/) ) `  x ) )
1513, 14eqeq12d 2457 . . . . . 6  |-  ( z  =  x  ->  (
( rec ( F ,  I ) `  z )  =  ( rec ( F ,  (/) ) `  z )  <-> 
( rec ( F ,  I ) `  x )  =  ( rec ( F ,  (/) ) `  x ) ) )
1615imbi2d 316 . . . . 5  |-  ( z  =  x  ->  (
( -.  I  e. 
_V  ->  ( rec ( F ,  I ) `  z )  =  ( rec ( F ,  (/) ) `  z ) )  <->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `
 x )  =  ( rec ( F ,  (/) ) `  x
) ) ) )
17 rdgprc0 27619 . . . . . 6  |-  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  (/) )  =  (/) )
18 0ex 4434 . . . . . . 7  |-  (/)  e.  _V
1918rdg0 6889 . . . . . 6  |-  ( rec ( F ,  (/) ) `  (/) )  =  (/)
2017, 19syl6eqr 2493 . . . . 5  |-  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  (/) )  =  ( rec ( F ,  (/) ) `  (/) ) )
21 fveq2 5703 . . . . . . 7  |-  ( ( rec ( F ,  I ) `  y
)  =  ( rec ( F ,  (/) ) `  y )  ->  ( F `  ( rec ( F ,  I
) `  y )
)  =  ( F `
 ( rec ( F ,  (/) ) `  y ) ) )
22 rdgsuc 6892 . . . . . . . 8  |-  ( y  e.  On  ->  ( rec ( F ,  I
) `  suc  y )  =  ( F `  ( rec ( F ,  I ) `  y
) ) )
23 rdgsuc 6892 . . . . . . . 8  |-  ( y  e.  On  ->  ( rec ( F ,  (/) ) `  suc  y )  =  ( F `  ( rec ( F ,  (/) ) `  y ) ) )
2422, 23eqeq12d 2457 . . . . . . 7  |-  ( y  e.  On  ->  (
( rec ( F ,  I ) `  suc  y )  =  ( rec ( F ,  (/) ) `  suc  y
)  <->  ( F `  ( rec ( F ,  I ) `  y
) )  =  ( F `  ( rec ( F ,  (/) ) `  y )
) ) )
2521, 24syl5ibr 221 . . . . . 6  |-  ( y  e.  On  ->  (
( rec ( F ,  I ) `  y )  =  ( rec ( F ,  (/) ) `  y )  ->  ( rec ( F ,  I ) `  suc  y )  =  ( rec ( F ,  (/) ) `  suc  y ) ) )
2625imim2d 52 . . . . 5  |-  ( y  e.  On  ->  (
( -.  I  e. 
_V  ->  ( rec ( F ,  I ) `  y )  =  ( rec ( F ,  (/) ) `  y ) )  ->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  suc  y )  =  ( rec ( F ,  (/) ) `  suc  y
) ) ) )
27 r19.21v 2815 . . . . . 6  |-  ( A. y  e.  z  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  y )  =  ( rec ( F ,  (/) ) `  y ) )  <->  ( -.  I  e.  _V  ->  A. y  e.  z  ( rec ( F ,  I ) `
 y )  =  ( rec ( F ,  (/) ) `  y
) ) )
28 limord 4790 . . . . . . . . 9  |-  ( Lim  z  ->  Ord  z )
29 ordsson 6413 . . . . . . . . 9  |-  ( Ord  z  ->  z  C_  On )
30 rdgfnon 6886 . . . . . . . . . 10  |-  rec ( F ,  I )  Fn  On
31 rdgfnon 6886 . . . . . . . . . 10  |-  rec ( F ,  (/) )  Fn  On
32 fvreseq 5817 . . . . . . . . . 10  |-  ( ( ( rec ( F ,  I )  Fn  On  /\  rec ( F ,  (/) )  Fn  On )  /\  z  C_  On )  ->  (
( rec ( F ,  I )  |`  z )  =  ( rec ( F ,  (/) )  |`  z )  <->  A. y  e.  z  ( rec ( F ,  I ) `  y
)  =  ( rec ( F ,  (/) ) `  y )
) )
3330, 31, 32mpanl12 682 . . . . . . . . 9  |-  ( z 
C_  On  ->  ( ( rec ( F ,  I )  |`  z
)  =  ( rec ( F ,  (/) )  |`  z )  <->  A. y  e.  z  ( rec ( F ,  I ) `
 y )  =  ( rec ( F ,  (/) ) `  y
) ) )
3428, 29, 333syl 20 . . . . . . . 8  |-  ( Lim  z  ->  ( ( rec ( F ,  I
)  |`  z )  =  ( rec ( F ,  (/) )  |`  z
)  <->  A. y  e.  z  ( rec ( F ,  I ) `  y )  =  ( rec ( F ,  (/) ) `  y ) ) )
35 rneq 5077 . . . . . . . . . . 11  |-  ( ( rec ( F ,  I )  |`  z
)  =  ( rec ( F ,  (/) )  |`  z )  ->  ran  ( rec ( F ,  I )  |`  z )  =  ran  ( rec ( F ,  (/) )  |`  z )
)
36 df-ima 4865 . . . . . . . . . . 11  |-  ( rec ( F ,  I
) " z )  =  ran  ( rec ( F ,  I
)  |`  z )
37 df-ima 4865 . . . . . . . . . . 11  |-  ( rec ( F ,  (/) ) " z )  =  ran  ( rec ( F ,  (/) )  |`  z )
3835, 36, 373eqtr4g 2500 . . . . . . . . . 10  |-  ( ( rec ( F ,  I )  |`  z
)  =  ( rec ( F ,  (/) )  |`  z )  -> 
( rec ( F ,  I ) "
z )  =  ( rec ( F ,  (/) ) " z ) )
3938unieqd 4113 . . . . . . . . 9  |-  ( ( rec ( F ,  I )  |`  z
)  =  ( rec ( F ,  (/) )  |`  z )  ->  U. ( rec ( F ,  I ) "
z )  =  U. ( rec ( F ,  (/) ) " z ) )
40 vex 2987 . . . . . . . . . 10  |-  z  e. 
_V
41 rdglim 6894 . . . . . . . . . . 11  |-  ( ( z  e.  _V  /\  Lim  z )  ->  ( rec ( F ,  I
) `  z )  =  U. ( rec ( F ,  I ) " z ) )
42 rdglim 6894 . . . . . . . . . . 11  |-  ( ( z  e.  _V  /\  Lim  z )  ->  ( rec ( F ,  (/) ) `  z )  =  U. ( rec ( F ,  (/) ) "
z ) )
4341, 42eqeq12d 2457 . . . . . . . . . 10  |-  ( ( z  e.  _V  /\  Lim  z )  ->  (
( rec ( F ,  I ) `  z )  =  ( rec ( F ,  (/) ) `  z )  <->  U. ( rec ( F ,  I ) "
z )  =  U. ( rec ( F ,  (/) ) " z ) ) )
4440, 43mpan 670 . . . . . . . . 9  |-  ( Lim  z  ->  ( ( rec ( F ,  I
) `  z )  =  ( rec ( F ,  (/) ) `  z )  <->  U. ( rec ( F ,  I
) " z )  =  U. ( rec ( F ,  (/) ) " z ) ) )
4539, 44syl5ibr 221 . . . . . . . 8  |-  ( Lim  z  ->  ( ( rec ( F ,  I
)  |`  z )  =  ( rec ( F ,  (/) )  |`  z
)  ->  ( rec ( F ,  I ) `
 z )  =  ( rec ( F ,  (/) ) `  z
) ) )
4634, 45sylbird 235 . . . . . . 7  |-  ( Lim  z  ->  ( A. y  e.  z  ( rec ( F ,  I
) `  y )  =  ( rec ( F ,  (/) ) `  y )  ->  ( rec ( F ,  I
) `  z )  =  ( rec ( F ,  (/) ) `  z ) ) )
4746imim2d 52 . . . . . 6  |-  ( Lim  z  ->  ( ( -.  I  e.  _V  ->  A. y  e.  z  ( rec ( F ,  I ) `  y )  =  ( rec ( F ,  (/) ) `  y ) )  ->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  z
)  =  ( rec ( F ,  (/) ) `  z )
) ) )
4827, 47syl5bi 217 . . . . 5  |-  ( Lim  z  ->  ( A. y  e.  z  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  y )  =  ( rec ( F ,  (/) ) `  y ) )  ->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  z
)  =  ( rec ( F ,  (/) ) `  z )
) ) )
494, 8, 12, 16, 20, 26, 48tfinds 6482 . . . 4  |-  ( x  e.  On  ->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  x )  =  ( rec ( F ,  (/) ) `  x ) ) )
5049com12 31 . . 3  |-  ( -.  I  e.  _V  ->  ( x  e.  On  ->  ( rec ( F ,  I ) `  x
)  =  ( rec ( F ,  (/) ) `  x )
) )
5150ralrimiv 2810 . 2  |-  ( -.  I  e.  _V  ->  A. x  e.  On  ( rec ( F ,  I
) `  x )  =  ( rec ( F ,  (/) ) `  x ) )
52 eqfnfv 5809 . . 3  |-  ( ( rec ( F ,  I )  Fn  On  /\ 
rec ( F ,  (/) )  Fn  On )  ->  ( rec ( F ,  I )  =  rec ( F ,  (/) )  <->  A. x  e.  On  ( rec ( F ,  I ) `  x
)  =  ( rec ( F ,  (/) ) `  x )
) )
5330, 31, 52mp2an 672 . 2  |-  ( rec ( F ,  I
)  =  rec ( F ,  (/) )  <->  A. x  e.  On  ( rec ( F ,  I ) `  x )  =  ( rec ( F ,  (/) ) `  x ) )
5451, 53sylibr 212 1  |-  ( -.  I  e.  _V  ->  rec ( F ,  I
)  =  rec ( F ,  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2727   _Vcvv 2984    C_ wss 3340   (/)c0 3649   U.cuni 4103   Ord word 4730   Oncon0 4731   Lim wlim 4732   suc csuc 4733   ran crn 4853    |` cres 4854   "cima 4855    Fn wfn 5425   ` cfv 5430   reccrdg 6877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-reu 2734  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-om 6489  df-recs 6844  df-rdg 6878
This theorem is referenced by:  dfrdg3  27622
  Copyright terms: Public domain W3C validator