Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgprc Structured version   Unicode version

Theorem rdgprc 29423
Description: The value of the recursive definition generator when 
I is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rdgprc  |-  ( -.  I  e.  _V  ->  rec ( F ,  I
)  =  rec ( F ,  (/) ) )

Proof of Theorem rdgprc
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5872 . . . . . . 7  |-  ( z  =  (/)  ->  ( rec ( F ,  I
) `  z )  =  ( rec ( F ,  I ) `  (/) ) )
2 fveq2 5872 . . . . . . 7  |-  ( z  =  (/)  ->  ( rec ( F ,  (/) ) `  z )  =  ( rec ( F ,  (/) ) `  (/) ) )
31, 2eqeq12d 2479 . . . . . 6  |-  ( z  =  (/)  ->  ( ( rec ( F ,  I ) `  z
)  =  ( rec ( F ,  (/) ) `  z )  <->  ( rec ( F ,  I ) `  (/) )  =  ( rec ( F ,  (/) ) `  (/) ) ) )
43imbi2d 316 . . . . 5  |-  ( z  =  (/)  ->  ( ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  z )  =  ( rec ( F ,  (/) ) `  z ) )  <->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `
 (/) )  =  ( rec ( F ,  (/) ) `  (/) ) ) ) )
5 fveq2 5872 . . . . . . 7  |-  ( z  =  y  ->  ( rec ( F ,  I
) `  z )  =  ( rec ( F ,  I ) `  y ) )
6 fveq2 5872 . . . . . . 7  |-  ( z  =  y  ->  ( rec ( F ,  (/) ) `  z )  =  ( rec ( F ,  (/) ) `  y ) )
75, 6eqeq12d 2479 . . . . . 6  |-  ( z  =  y  ->  (
( rec ( F ,  I ) `  z )  =  ( rec ( F ,  (/) ) `  z )  <-> 
( rec ( F ,  I ) `  y )  =  ( rec ( F ,  (/) ) `  y ) ) )
87imbi2d 316 . . . . 5  |-  ( z  =  y  ->  (
( -.  I  e. 
_V  ->  ( rec ( F ,  I ) `  z )  =  ( rec ( F ,  (/) ) `  z ) )  <->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `
 y )  =  ( rec ( F ,  (/) ) `  y
) ) ) )
9 fveq2 5872 . . . . . . 7  |-  ( z  =  suc  y  -> 
( rec ( F ,  I ) `  z )  =  ( rec ( F ,  I ) `  suc  y ) )
10 fveq2 5872 . . . . . . 7  |-  ( z  =  suc  y  -> 
( rec ( F ,  (/) ) `  z
)  =  ( rec ( F ,  (/) ) `  suc  y ) )
119, 10eqeq12d 2479 . . . . . 6  |-  ( z  =  suc  y  -> 
( ( rec ( F ,  I ) `  z )  =  ( rec ( F ,  (/) ) `  z )  <-> 
( rec ( F ,  I ) `  suc  y )  =  ( rec ( F ,  (/) ) `  suc  y
) ) )
1211imbi2d 316 . . . . 5  |-  ( z  =  suc  y  -> 
( ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `
 z )  =  ( rec ( F ,  (/) ) `  z
) )  <->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  suc  y )  =  ( rec ( F ,  (/) ) `  suc  y
) ) ) )
13 fveq2 5872 . . . . . . 7  |-  ( z  =  x  ->  ( rec ( F ,  I
) `  z )  =  ( rec ( F ,  I ) `  x ) )
14 fveq2 5872 . . . . . . 7  |-  ( z  =  x  ->  ( rec ( F ,  (/) ) `  z )  =  ( rec ( F ,  (/) ) `  x ) )
1513, 14eqeq12d 2479 . . . . . 6  |-  ( z  =  x  ->  (
( rec ( F ,  I ) `  z )  =  ( rec ( F ,  (/) ) `  z )  <-> 
( rec ( F ,  I ) `  x )  =  ( rec ( F ,  (/) ) `  x ) ) )
1615imbi2d 316 . . . . 5  |-  ( z  =  x  ->  (
( -.  I  e. 
_V  ->  ( rec ( F ,  I ) `  z )  =  ( rec ( F ,  (/) ) `  z ) )  <->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `
 x )  =  ( rec ( F ,  (/) ) `  x
) ) ) )
17 rdgprc0 29422 . . . . . 6  |-  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  (/) )  =  (/) )
18 0ex 4587 . . . . . . 7  |-  (/)  e.  _V
1918rdg0 7105 . . . . . 6  |-  ( rec ( F ,  (/) ) `  (/) )  =  (/)
2017, 19syl6eqr 2516 . . . . 5  |-  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  (/) )  =  ( rec ( F ,  (/) ) `  (/) ) )
21 fveq2 5872 . . . . . . 7  |-  ( ( rec ( F ,  I ) `  y
)  =  ( rec ( F ,  (/) ) `  y )  ->  ( F `  ( rec ( F ,  I
) `  y )
)  =  ( F `
 ( rec ( F ,  (/) ) `  y ) ) )
22 rdgsuc 7108 . . . . . . . 8  |-  ( y  e.  On  ->  ( rec ( F ,  I
) `  suc  y )  =  ( F `  ( rec ( F ,  I ) `  y
) ) )
23 rdgsuc 7108 . . . . . . . 8  |-  ( y  e.  On  ->  ( rec ( F ,  (/) ) `  suc  y )  =  ( F `  ( rec ( F ,  (/) ) `  y ) ) )
2422, 23eqeq12d 2479 . . . . . . 7  |-  ( y  e.  On  ->  (
( rec ( F ,  I ) `  suc  y )  =  ( rec ( F ,  (/) ) `  suc  y
)  <->  ( F `  ( rec ( F ,  I ) `  y
) )  =  ( F `  ( rec ( F ,  (/) ) `  y )
) ) )
2521, 24syl5ibr 221 . . . . . 6  |-  ( y  e.  On  ->  (
( rec ( F ,  I ) `  y )  =  ( rec ( F ,  (/) ) `  y )  ->  ( rec ( F ,  I ) `  suc  y )  =  ( rec ( F ,  (/) ) `  suc  y ) ) )
2625imim2d 52 . . . . 5  |-  ( y  e.  On  ->  (
( -.  I  e. 
_V  ->  ( rec ( F ,  I ) `  y )  =  ( rec ( F ,  (/) ) `  y ) )  ->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  suc  y )  =  ( rec ( F ,  (/) ) `  suc  y
) ) ) )
27 r19.21v 2862 . . . . . 6  |-  ( A. y  e.  z  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  y )  =  ( rec ( F ,  (/) ) `  y ) )  <->  ( -.  I  e.  _V  ->  A. y  e.  z  ( rec ( F ,  I ) `
 y )  =  ( rec ( F ,  (/) ) `  y
) ) )
28 limord 4946 . . . . . . . . 9  |-  ( Lim  z  ->  Ord  z )
29 ordsson 6624 . . . . . . . . 9  |-  ( Ord  z  ->  z  C_  On )
30 rdgfnon 7102 . . . . . . . . . 10  |-  rec ( F ,  I )  Fn  On
31 rdgfnon 7102 . . . . . . . . . 10  |-  rec ( F ,  (/) )  Fn  On
32 fvreseq 5990 . . . . . . . . . 10  |-  ( ( ( rec ( F ,  I )  Fn  On  /\  rec ( F ,  (/) )  Fn  On )  /\  z  C_  On )  ->  (
( rec ( F ,  I )  |`  z )  =  ( rec ( F ,  (/) )  |`  z )  <->  A. y  e.  z  ( rec ( F ,  I ) `  y
)  =  ( rec ( F ,  (/) ) `  y )
) )
3330, 31, 32mpanl12 682 . . . . . . . . 9  |-  ( z 
C_  On  ->  ( ( rec ( F ,  I )  |`  z
)  =  ( rec ( F ,  (/) )  |`  z )  <->  A. y  e.  z  ( rec ( F ,  I ) `
 y )  =  ( rec ( F ,  (/) ) `  y
) ) )
3428, 29, 333syl 20 . . . . . . . 8  |-  ( Lim  z  ->  ( ( rec ( F ,  I
)  |`  z )  =  ( rec ( F ,  (/) )  |`  z
)  <->  A. y  e.  z  ( rec ( F ,  I ) `  y )  =  ( rec ( F ,  (/) ) `  y ) ) )
35 rneq 5238 . . . . . . . . . . 11  |-  ( ( rec ( F ,  I )  |`  z
)  =  ( rec ( F ,  (/) )  |`  z )  ->  ran  ( rec ( F ,  I )  |`  z )  =  ran  ( rec ( F ,  (/) )  |`  z )
)
36 df-ima 5021 . . . . . . . . . . 11  |-  ( rec ( F ,  I
) " z )  =  ran  ( rec ( F ,  I
)  |`  z )
37 df-ima 5021 . . . . . . . . . . 11  |-  ( rec ( F ,  (/) ) " z )  =  ran  ( rec ( F ,  (/) )  |`  z )
3835, 36, 373eqtr4g 2523 . . . . . . . . . 10  |-  ( ( rec ( F ,  I )  |`  z
)  =  ( rec ( F ,  (/) )  |`  z )  -> 
( rec ( F ,  I ) "
z )  =  ( rec ( F ,  (/) ) " z ) )
3938unieqd 4261 . . . . . . . . 9  |-  ( ( rec ( F ,  I )  |`  z
)  =  ( rec ( F ,  (/) )  |`  z )  ->  U. ( rec ( F ,  I ) "
z )  =  U. ( rec ( F ,  (/) ) " z ) )
40 vex 3112 . . . . . . . . . 10  |-  z  e. 
_V
41 rdglim 7110 . . . . . . . . . . 11  |-  ( ( z  e.  _V  /\  Lim  z )  ->  ( rec ( F ,  I
) `  z )  =  U. ( rec ( F ,  I ) " z ) )
42 rdglim 7110 . . . . . . . . . . 11  |-  ( ( z  e.  _V  /\  Lim  z )  ->  ( rec ( F ,  (/) ) `  z )  =  U. ( rec ( F ,  (/) ) "
z ) )
4341, 42eqeq12d 2479 . . . . . . . . . 10  |-  ( ( z  e.  _V  /\  Lim  z )  ->  (
( rec ( F ,  I ) `  z )  =  ( rec ( F ,  (/) ) `  z )  <->  U. ( rec ( F ,  I ) "
z )  =  U. ( rec ( F ,  (/) ) " z ) ) )
4440, 43mpan 670 . . . . . . . . 9  |-  ( Lim  z  ->  ( ( rec ( F ,  I
) `  z )  =  ( rec ( F ,  (/) ) `  z )  <->  U. ( rec ( F ,  I
) " z )  =  U. ( rec ( F ,  (/) ) " z ) ) )
4539, 44syl5ibr 221 . . . . . . . 8  |-  ( Lim  z  ->  ( ( rec ( F ,  I
)  |`  z )  =  ( rec ( F ,  (/) )  |`  z
)  ->  ( rec ( F ,  I ) `
 z )  =  ( rec ( F ,  (/) ) `  z
) ) )
4634, 45sylbird 235 . . . . . . 7  |-  ( Lim  z  ->  ( A. y  e.  z  ( rec ( F ,  I
) `  y )  =  ( rec ( F ,  (/) ) `  y )  ->  ( rec ( F ,  I
) `  z )  =  ( rec ( F ,  (/) ) `  z ) ) )
4746imim2d 52 . . . . . 6  |-  ( Lim  z  ->  ( ( -.  I  e.  _V  ->  A. y  e.  z  ( rec ( F ,  I ) `  y )  =  ( rec ( F ,  (/) ) `  y ) )  ->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  z
)  =  ( rec ( F ,  (/) ) `  z )
) ) )
4827, 47syl5bi 217 . . . . 5  |-  ( Lim  z  ->  ( A. y  e.  z  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  y )  =  ( rec ( F ,  (/) ) `  y ) )  ->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  z
)  =  ( rec ( F ,  (/) ) `  z )
) ) )
494, 8, 12, 16, 20, 26, 48tfinds 6693 . . . 4  |-  ( x  e.  On  ->  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  x )  =  ( rec ( F ,  (/) ) `  x ) ) )
5049com12 31 . . 3  |-  ( -.  I  e.  _V  ->  ( x  e.  On  ->  ( rec ( F ,  I ) `  x
)  =  ( rec ( F ,  (/) ) `  x )
) )
5150ralrimiv 2869 . 2  |-  ( -.  I  e.  _V  ->  A. x  e.  On  ( rec ( F ,  I
) `  x )  =  ( rec ( F ,  (/) ) `  x ) )
52 eqfnfv 5982 . . 3  |-  ( ( rec ( F ,  I )  Fn  On  /\ 
rec ( F ,  (/) )  Fn  On )  ->  ( rec ( F ,  I )  =  rec ( F ,  (/) )  <->  A. x  e.  On  ( rec ( F ,  I ) `  x
)  =  ( rec ( F ,  (/) ) `  x )
) )
5330, 31, 52mp2an 672 . 2  |-  ( rec ( F ,  I
)  =  rec ( F ,  (/) )  <->  A. x  e.  On  ( rec ( F ,  I ) `  x )  =  ( rec ( F ,  (/) ) `  x ) )
5451, 53sylibr 212 1  |-  ( -.  I  e.  _V  ->  rec ( F ,  I
)  =  rec ( F ,  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   _Vcvv 3109    C_ wss 3471   (/)c0 3793   U.cuni 4251   Ord word 4886   Oncon0 4887   Lim wlim 4888   suc csuc 4889   ran crn 5009    |` cres 5010   "cima 5011    Fn wfn 5589   ` cfv 5594   reccrdg 7093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-om 6700  df-recs 7060  df-rdg 7094
This theorem is referenced by:  dfrdg3  29425
  Copyright terms: Public domain W3C validator