Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdglem1 Structured version   Unicode version

Theorem rdglem1 7091
 Description: Lemma used with the recursive definition generator. This is a trivial lemma that just changes bound variables for later use. (Contributed by NM, 9-Apr-1995.)
Assertion
Ref Expression
rdglem1
Distinct variable groups:   ,,,,,   ,,,,

Proof of Theorem rdglem1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . . 3
21tfrlem3 7057 . 2
3 fveq2 5871 . . . . . . 7
4 reseq2 5273 . . . . . . . 8
54fveq2d 5875 . . . . . . 7
63, 5eqeq12d 2489 . . . . . 6
76cbvralv 3093 . . . . 5
87anbi2i 694 . . . 4
98rexbii 2969 . . 3
109abbii 2601 . 2
112, 10eqtri 2496 1
 Colors of variables: wff setvar class Syntax hints:   wa 369   wceq 1379  cab 2452  wral 2817  wrex 2818  con0 4883   cres 5006   wfn 5588  cfv 5593 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4251  df-br 4453  df-opab 4511  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-res 5016  df-iota 5556  df-fun 5595  df-fn 5596  df-fv 5601 This theorem is referenced by:  rdgseg  7098
 Copyright terms: Public domain W3C validator