MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgdmlim Structured version   Unicode version

Theorem rdgdmlim 6885
Description: The domain of the recursive definition generator is a limit ordinal. (Contributed by NM, 16-Nov-2014.)
Assertion
Ref Expression
rdgdmlim  |-  Lim  dom  rec ( F ,  A
)

Proof of Theorem rdgdmlim
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 df-rdg 6878 . . 3  |-  rec ( F ,  A )  = recs ( ( g  e. 
_V  |->  if ( g  =  (/) ,  A ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  (
g `  U. dom  g
) ) ) ) ) )
21tfr1a 6865 . 2  |-  ( Fun 
rec ( F ,  A )  /\  Lim  dom 
rec ( F ,  A ) )
32simpri 462 1  |-  Lim  dom  rec ( F ,  A
)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1369   _Vcvv 2984   (/)c0 3649   ifcif 3803   U.cuni 4103    e. cmpt 4362   Lim wlim 4732   dom cdm 4852   ran crn 4853   Fun wfun 5424   ` cfv 5430   reccrdg 6877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-reu 2734  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-recs 6844  df-rdg 6878
This theorem is referenced by:  rdg0  6889  rdgsucg  6891  rdglimg  6893  rdgsucmptnf  6897  frfnom  6902  frsuc  6904  r1funlim  7985  ackbij2  8424
  Copyright terms: Public domain W3C validator