MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rbaibd Structured version   Unicode version

Theorem rbaibd 911
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
baibd.1  |-  ( ph  ->  ( ps  <->  ( ch  /\ 
th ) ) )
Assertion
Ref Expression
rbaibd  |-  ( (
ph  /\  th )  ->  ( ps  <->  ch )
)

Proof of Theorem rbaibd
StepHypRef Expression
1 baibd.1 . 2  |-  ( ph  ->  ( ps  <->  ( ch  /\ 
th ) ) )
2 iba 501 . . 3  |-  ( th 
->  ( ch  <->  ( ch  /\ 
th ) ) )
32bicomd 201 . 2  |-  ( th 
->  ( ( ch  /\  th )  <->  ch ) )
41, 3sylan9bb 698 1  |-  ( (
ph  /\  th )  ->  ( ps  <->  ch )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 369
This theorem is referenced by:  qsqueeze  11452  o1lo12  13508  incexc2  13799  gexdvds  16926  fsumvma  23867
  Copyright terms: Public domain W3C validator