MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxpsuc Structured version   Unicode version

Theorem rankxpsuc 8252
Description: The rank of a Cartesian product when the rank of the union of its arguments is a successor ordinal. Part of Exercise 4 of [Kunen] p. 107. See rankxplim 8249 for the limit ordinal case. (Contributed by NM, 19-Sep-2006.)
Hypotheses
Ref Expression
rankxplim.1  |-  A  e. 
_V
rankxplim.2  |-  B  e. 
_V
Assertion
Ref Expression
rankxpsuc  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  -> 
( rank `  ( A  X.  B ) )  =  suc  suc  ( rank `  ( A  u.  B
) ) )

Proof of Theorem rankxpsuc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 rankuni 8233 . . . . . . . 8  |-  ( rank `  U. U. ( A  X.  B ) )  =  U. ( rank `  U. ( A  X.  B ) )
2 rankuni 8233 . . . . . . . . 9  |-  ( rank `  U. ( A  X.  B ) )  = 
U. ( rank `  ( A  X.  B ) )
32unieqi 4199 . . . . . . . 8  |-  U. ( rank `  U. ( A  X.  B ) )  =  U. U. ( rank `  ( A  X.  B ) )
41, 3eqtri 2431 . . . . . . 7  |-  ( rank `  U. U. ( A  X.  B ) )  =  U. U. ( rank `  ( A  X.  B ) )
5 unixp 5478 . . . . . . . 8  |-  ( ( A  X.  B )  =/=  (/)  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
65fveq2d 5809 . . . . . . 7  |-  ( ( A  X.  B )  =/=  (/)  ->  ( rank ` 
U. U. ( A  X.  B ) )  =  ( rank `  ( A  u.  B )
) )
74, 6syl5reqr 2458 . . . . . 6  |-  ( ( A  X.  B )  =/=  (/)  ->  ( rank `  ( A  u.  B
) )  =  U. U. ( rank `  ( A  X.  B ) ) )
8 suc11reg 7989 . . . . . 6  |-  ( suc  ( rank `  ( A  u.  B )
)  =  suc  U. U. ( rank `  ( A  X.  B ) )  <-> 
( rank `  ( A  u.  B ) )  = 
U. U. ( rank `  ( A  X.  B ) ) )
97, 8sylibr 212 . . . . 5  |-  ( ( A  X.  B )  =/=  (/)  ->  suc  ( rank `  ( A  u.  B
) )  =  suc  U.
U. ( rank `  ( A  X.  B ) ) )
109adantl 464 . . . 4  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  ->  suc  ( rank `  ( A  u.  B )
)  =  suc  U. U. ( rank `  ( A  X.  B ) ) )
11 fvex 5815 . . . . . . . . . . . . . 14  |-  ( rank `  ( A  u.  B
) )  e.  _V
12 eleq1 2474 . . . . . . . . . . . . . 14  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  (
( rank `  ( A  u.  B ) )  e. 
_V 
<->  suc  C  e.  _V ) )
1311, 12mpbii 211 . . . . . . . . . . . . 13  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  suc  C  e.  _V )
14 sucexb 6582 . . . . . . . . . . . . 13  |-  ( C  e.  _V  <->  suc  C  e. 
_V )
1513, 14sylibr 212 . . . . . . . . . . . 12  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  C  e.  _V )
16 nlimsucg 6615 . . . . . . . . . . . 12  |-  ( C  e.  _V  ->  -.  Lim  suc  C )
1715, 16syl 17 . . . . . . . . . . 11  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  -.  Lim  suc  C )
18 limeq 4833 . . . . . . . . . . 11  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  ( Lim  ( rank `  ( A  u.  B )
)  <->  Lim  suc  C )
)
1917, 18mtbird 299 . . . . . . . . . 10  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  -.  Lim  ( rank `  ( A  u.  B )
) )
20 rankxplim.1 . . . . . . . . . . 11  |-  A  e. 
_V
21 rankxplim.2 . . . . . . . . . . 11  |-  B  e. 
_V
2220, 21rankxplim2 8250 . . . . . . . . . 10  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  ( rank `  ( A  u.  B
) ) )
2319, 22nsyl 121 . . . . . . . . 9  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  -.  Lim  ( rank `  ( A  X.  B ) ) )
2420, 21xpex 6542 . . . . . . . . . . . . . 14  |-  ( A  X.  B )  e. 
_V
2524rankeq0 8231 . . . . . . . . . . . . 13  |-  ( ( A  X.  B )  =  (/)  <->  ( rank `  ( A  X.  B ) )  =  (/) )
2625necon3abii 2663 . . . . . . . . . . . 12  |-  ( ( A  X.  B )  =/=  (/)  <->  -.  ( rank `  ( A  X.  B
) )  =  (/) )
27 rankon 8165 . . . . . . . . . . . . . . . 16  |-  ( rank `  ( A  X.  B
) )  e.  On
2827onordi 4925 . . . . . . . . . . . . . . 15  |-  Ord  ( rank `  ( A  X.  B ) )
29 ordzsl 6618 . . . . . . . . . . . . . . 15  |-  ( Ord  ( rank `  ( A  X.  B ) )  <-> 
( ( rank `  ( A  X.  B ) )  =  (/)  \/  E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  \/ 
Lim  ( rank `  ( A  X.  B ) ) ) )
3028, 29mpbi 208 . . . . . . . . . . . . . 14  |-  ( (
rank `  ( A  X.  B ) )  =  (/)  \/  E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  \/ 
Lim  ( rank `  ( A  X.  B ) ) )
31 3orass 977 . . . . . . . . . . . . . 14  |-  ( ( ( rank `  ( A  X.  B ) )  =  (/)  \/  E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  \/ 
Lim  ( rank `  ( A  X.  B ) ) )  <->  ( ( rank `  ( A  X.  B
) )  =  (/)  \/  ( E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  \/ 
Lim  ( rank `  ( A  X.  B ) ) ) ) )
3230, 31mpbi 208 . . . . . . . . . . . . 13  |-  ( (
rank `  ( A  X.  B ) )  =  (/)  \/  ( E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  \/ 
Lim  ( rank `  ( A  X.  B ) ) ) )
3332ori 373 . . . . . . . . . . . 12  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  \/  Lim  ( rank `  ( A  X.  B ) ) ) )
3426, 33sylbi 195 . . . . . . . . . . 11  |-  ( ( A  X.  B )  =/=  (/)  ->  ( E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  \/  Lim  ( rank `  ( A  X.  B ) ) ) )
3534ord 375 . . . . . . . . . 10  |-  ( ( A  X.  B )  =/=  (/)  ->  ( -.  E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  ->  Lim  ( rank `  ( A  X.  B ) ) ) )
3635con1d 124 . . . . . . . . 9  |-  ( ( A  X.  B )  =/=  (/)  ->  ( -.  Lim  ( rank `  ( A  X.  B ) )  ->  E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x ) )
3723, 36syl5com 28 . . . . . . . 8  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  (
( A  X.  B
)  =/=  (/)  ->  E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x ) )
38 vex 3061 . . . . . . . . . . . 12  |-  x  e. 
_V
39 nlimsucg 6615 . . . . . . . . . . . 12  |-  ( x  e.  _V  ->  -.  Lim  suc  x )
4038, 39ax-mp 5 . . . . . . . . . . 11  |-  -.  Lim  suc  x
41 limeq 4833 . . . . . . . . . . 11  |-  ( (
rank `  ( A  X.  B ) )  =  suc  x  ->  ( Lim  ( rank `  ( A  X.  B ) )  <->  Lim  suc  x ) )
4240, 41mtbiri 301 . . . . . . . . . 10  |-  ( (
rank `  ( A  X.  B ) )  =  suc  x  ->  -.  Lim  ( rank `  ( A  X.  B ) ) )
4342rexlimivw 2892 . . . . . . . . 9  |-  ( E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  ->  -.  Lim  ( rank `  ( A  X.  B ) ) )
4420, 21rankxplim3 8251 . . . . . . . . 9  |-  ( Lim  ( rank `  ( A  X.  B ) )  <->  Lim  U. ( rank `  ( A  X.  B ) ) )
4543, 44sylnib 302 . . . . . . . 8  |-  ( E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  ->  -.  Lim  U. ( rank `  ( A  X.  B ) ) )
4637, 45syl6com 33 . . . . . . 7  |-  ( ( A  X.  B )  =/=  (/)  ->  ( ( rank `  ( A  u.  B ) )  =  suc  C  ->  -.  Lim  U. ( rank `  ( A  X.  B ) ) ) )
47 unixp0 5479 . . . . . . . . . . . 12  |-  ( ( A  X.  B )  =  (/)  <->  U. ( A  X.  B )  =  (/) )
4824uniex 6534 . . . . . . . . . . . . 13  |-  U. ( A  X.  B )  e. 
_V
4948rankeq0 8231 . . . . . . . . . . . 12  |-  ( U. ( A  X.  B
)  =  (/)  <->  ( rank ` 
U. ( A  X.  B ) )  =  (/) )
502eqeq1i 2409 . . . . . . . . . . . 12  |-  ( (
rank `  U. ( A  X.  B ) )  =  (/)  <->  U. ( rank `  ( A  X.  B ) )  =  (/) )
5147, 49, 503bitri 271 . . . . . . . . . . 11  |-  ( ( A  X.  B )  =  (/)  <->  U. ( rank `  ( A  X.  B ) )  =  (/) )
5251necon3abii 2663 . . . . . . . . . 10  |-  ( ( A  X.  B )  =/=  (/)  <->  -.  U. ( rank `  ( A  X.  B ) )  =  (/) )
53 onuni 6566 . . . . . . . . . . . . . . 15  |-  ( (
rank `  ( A  X.  B ) )  e.  On  ->  U. ( rank `  ( A  X.  B ) )  e.  On )
5427, 53ax-mp 5 . . . . . . . . . . . . . 14  |-  U. ( rank `  ( A  X.  B ) )  e.  On
5554onordi 4925 . . . . . . . . . . . . 13  |-  Ord  U. ( rank `  ( A  X.  B ) )
56 ordzsl 6618 . . . . . . . . . . . . 13  |-  ( Ord  U. ( rank `  ( A  X.  B ) )  <-> 
( U. ( rank `  ( A  X.  B
) )  =  (/)  \/ 
E. x  e.  On  U. ( rank `  ( A  X.  B ) )  =  suc  x  \/ 
Lim  U. ( rank `  ( A  X.  B ) ) ) )
5755, 56mpbi 208 . . . . . . . . . . . 12  |-  ( U. ( rank `  ( A  X.  B ) )  =  (/)  \/  E. x  e.  On  U. ( rank `  ( A  X.  B
) )  =  suc  x  \/  Lim  U. ( rank `  ( A  X.  B ) ) )
58 3orass 977 . . . . . . . . . . . 12  |-  ( ( U. ( rank `  ( A  X.  B ) )  =  (/)  \/  E. x  e.  On  U. ( rank `  ( A  X.  B
) )  =  suc  x  \/  Lim  U. ( rank `  ( A  X.  B ) ) )  <-> 
( U. ( rank `  ( A  X.  B
) )  =  (/)  \/  ( E. x  e.  On  U. ( rank `  ( A  X.  B
) )  =  suc  x  \/  Lim  U. ( rank `  ( A  X.  B ) ) ) ) )
5957, 58mpbi 208 . . . . . . . . . . 11  |-  ( U. ( rank `  ( A  X.  B ) )  =  (/)  \/  ( E. x  e.  On  U. ( rank `  ( A  X.  B
) )  =  suc  x  \/  Lim  U. ( rank `  ( A  X.  B ) ) ) )
6059ori 373 . . . . . . . . . 10  |-  ( -. 
U. ( rank `  ( A  X.  B ) )  =  (/)  ->  ( E. x  e.  On  U. ( rank `  ( A  X.  B ) )  =  suc  x  \/  Lim  U. ( rank `  ( A  X.  B ) ) ) )
6152, 60sylbi 195 . . . . . . . . 9  |-  ( ( A  X.  B )  =/=  (/)  ->  ( E. x  e.  On  U. ( rank `  ( A  X.  B ) )  =  suc  x  \/  Lim  U. ( rank `  ( A  X.  B ) ) ) )
6261ord 375 . . . . . . . 8  |-  ( ( A  X.  B )  =/=  (/)  ->  ( -.  E. x  e.  On  U. ( rank `  ( A  X.  B ) )  =  suc  x  ->  Lim  U. ( rank `  ( A  X.  B ) ) ) )
6362con1d 124 . . . . . . 7  |-  ( ( A  X.  B )  =/=  (/)  ->  ( -.  Lim  U. ( rank `  ( A  X.  B ) )  ->  E. x  e.  On  U. ( rank `  ( A  X.  B ) )  =  suc  x ) )
6446, 63syld 42 . . . . . 6  |-  ( ( A  X.  B )  =/=  (/)  ->  ( ( rank `  ( A  u.  B ) )  =  suc  C  ->  E. x  e.  On  U. ( rank `  ( A  X.  B
) )  =  suc  x ) )
6564impcom 428 . . . . 5  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  ->  E. x  e.  On  U. ( rank `  ( A  X.  B ) )  =  suc  x )
66 onsucuni2 6607 . . . . . . 7  |-  ( ( U. ( rank `  ( A  X.  B ) )  e.  On  /\  U. ( rank `  ( A  X.  B ) )  =  suc  x )  ->  suc  U. U. ( rank `  ( A  X.  B
) )  =  U. ( rank `  ( A  X.  B ) ) )
6754, 66mpan 668 . . . . . 6  |-  ( U. ( rank `  ( A  X.  B ) )  =  suc  x  ->  suc  U.
U. ( rank `  ( A  X.  B ) )  =  U. ( rank `  ( A  X.  B
) ) )
6867rexlimivw 2892 . . . . 5  |-  ( E. x  e.  On  U. ( rank `  ( A  X.  B ) )  =  suc  x  ->  suc  U.
U. ( rank `  ( A  X.  B ) )  =  U. ( rank `  ( A  X.  B
) ) )
6965, 68syl 17 . . . 4  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  ->  suc  U. U. ( rank `  ( A  X.  B
) )  =  U. ( rank `  ( A  X.  B ) ) )
7010, 69eqtrd 2443 . . 3  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  ->  suc  ( rank `  ( A  u.  B )
)  =  U. ( rank `  ( A  X.  B ) ) )
71 suc11reg 7989 . . 3  |-  ( suc 
suc  ( rank `  ( A  u.  B )
)  =  suc  U. ( rank `  ( A  X.  B ) )  <->  suc  ( rank `  ( A  u.  B
) )  =  U. ( rank `  ( A  X.  B ) ) )
7270, 71sylibr 212 . 2  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  ->  suc  suc  ( rank `  ( A  u.  B )
)  =  suc  U. ( rank `  ( A  X.  B ) ) )
7337imp 427 . . 3  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  ->  E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x )
74 onsucuni2 6607 . . . . 5  |-  ( ( ( rank `  ( A  X.  B ) )  e.  On  /\  ( rank `  ( A  X.  B ) )  =  suc  x )  ->  suc  U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  X.  B ) ) )
7527, 74mpan 668 . . . 4  |-  ( (
rank `  ( A  X.  B ) )  =  suc  x  ->  suc  U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  X.  B ) ) )
7675rexlimivw 2892 . . 3  |-  ( E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  ->  suc  U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  X.  B ) ) )
7773, 76syl 17 . 2  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  ->  suc  U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  X.  B ) ) )
7872, 77eqtr2d 2444 1  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  -> 
( rank `  ( A  X.  B ) )  =  suc  suc  ( rank `  ( A  u.  B
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 366    /\ wa 367    \/ w3o 973    = wceq 1405    e. wcel 1842    =/= wne 2598   E.wrex 2754   _Vcvv 3058    u. cun 3411   (/)c0 3737   U.cuni 4190   Ord word 4820   Oncon0 4821   Lim wlim 4822   suc csuc 4823    X. cxp 4940   ` cfv 5525   rankcrnk 8133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530  ax-reg 7972  ax-inf2 8011
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-ord 4824  df-on 4825  df-lim 4826  df-suc 4827  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-om 6639  df-recs 6999  df-rdg 7033  df-r1 8134  df-rank 8135
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator