MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxplim3 Structured version   Unicode version

Theorem rankxplim3 8080
Description: The rank of a Cartesian product is a limit ordinal iff its union is. (Contributed by NM, 19-Sep-2006.)
Hypotheses
Ref Expression
rankxplim.1  |-  A  e. 
_V
rankxplim.2  |-  B  e. 
_V
Assertion
Ref Expression
rankxplim3  |-  ( Lim  ( rank `  ( A  X.  B ) )  <->  Lim  U. ( rank `  ( A  X.  B ) ) )

Proof of Theorem rankxplim3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limuni2 4775 . 2  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  U. ( rank `  ( A  X.  B ) ) )
2 0ellim 4776 . . . 4  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  (/)  e.  U. ( rank `  ( A  X.  B ) ) )
3 n0i 3637 . . . 4  |-  ( (/)  e.  U. ( rank `  ( A  X.  B ) )  ->  -.  U. ( rank `  ( A  X.  B ) )  =  (/) )
4 unieq 4094 . . . . . 6  |-  ( (
rank `  ( A  X.  B ) )  =  (/)  ->  U. ( rank `  ( A  X.  B ) )  =  U. (/) )
5 uni0 4113 . . . . . 6  |-  U. (/)  =  (/)
64, 5syl6eq 2486 . . . . 5  |-  ( (
rank `  ( A  X.  B ) )  =  (/)  ->  U. ( rank `  ( A  X.  B ) )  =  (/) )
76con3i 135 . . . 4  |-  ( -. 
U. ( rank `  ( A  X.  B ) )  =  (/)  ->  -.  ( rank `  ( A  X.  B ) )  =  (/) )
82, 3, 73syl 20 . . 3  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  -.  ( rank `  ( A  X.  B
) )  =  (/) )
9 rankon 7994 . . . . . . . . . 10  |-  ( rank `  ( A  u.  B
) )  e.  On
109onsuci 6444 . . . . . . . . 9  |-  suc  ( rank `  ( A  u.  B ) )  e.  On
1110onsuci 6444 . . . . . . . 8  |-  suc  suc  ( rank `  ( A  u.  B ) )  e.  On
1211elexi 2977 . . . . . . 7  |-  suc  suc  ( rank `  ( A  u.  B ) )  e. 
_V
1312sucid 4793 . . . . . 6  |-  suc  suc  ( rank `  ( A  u.  B ) )  e. 
suc  suc  suc  ( rank `  ( A  u.  B
) )
1411onsuci 6444 . . . . . . . 8  |-  suc  suc  suc  ( rank `  ( A  u.  B )
)  e.  On
15 ontri1 4748 . . . . . . . 8  |-  ( ( suc  suc  suc  ( rank `  ( A  u.  B
) )  e.  On  /\ 
suc  suc  ( rank `  ( A  u.  B )
)  e.  On )  ->  ( suc  suc  suc  ( rank `  ( A  u.  B )
)  C_  suc  suc  ( rank `  ( A  u.  B ) )  <->  -.  suc  suc  ( rank `  ( A  u.  B ) )  e. 
suc  suc  suc  ( rank `  ( A  u.  B
) ) ) )
1614, 11, 15mp2an 672 . . . . . . 7  |-  ( suc 
suc  suc  ( rank `  ( A  u.  B )
)  C_  suc  suc  ( rank `  ( A  u.  B ) )  <->  -.  suc  suc  ( rank `  ( A  u.  B ) )  e. 
suc  suc  suc  ( rank `  ( A  u.  B
) ) )
1716con2bii 332 . . . . . 6  |-  ( suc 
suc  ( rank `  ( A  u.  B )
)  e.  suc  suc  suc  ( rank `  ( A  u.  B )
)  <->  -.  suc  suc  suc  ( rank `  ( A  u.  B ) )  C_  suc  suc  ( rank `  ( A  u.  B )
) )
1813, 17mpbi 208 . . . . 5  |-  -.  suc  suc 
suc  ( rank `  ( A  u.  B )
)  C_  suc  suc  ( rank `  ( A  u.  B ) )
19 rankxplim.1 . . . . . . 7  |-  A  e. 
_V
20 rankxplim.2 . . . . . . 7  |-  B  e. 
_V
2119, 20rankxpu 8075 . . . . . 6  |-  ( rank `  ( A  X.  B
) )  C_  suc  suc  ( rank `  ( A  u.  B )
)
22 sstr 3359 . . . . . 6  |-  ( ( suc  suc  suc  ( rank `  ( A  u.  B
) )  C_  ( rank `  ( A  X.  B ) )  /\  ( rank `  ( A  X.  B ) )  C_  suc  suc  ( rank `  ( A  u.  B )
) )  ->  suc  suc 
suc  ( rank `  ( A  u.  B )
)  C_  suc  suc  ( rank `  ( A  u.  B ) ) )
2321, 22mpan2 671 . . . . 5  |-  ( suc 
suc  suc  ( rank `  ( A  u.  B )
)  C_  ( rank `  ( A  X.  B
) )  ->  suc  suc 
suc  ( rank `  ( A  u.  B )
)  C_  suc  suc  ( rank `  ( A  u.  B ) ) )
2418, 23mto 176 . . . 4  |-  -.  suc  suc 
suc  ( rank `  ( A  u.  B )
)  C_  ( rank `  ( A  X.  B
) )
25 reeanv 2883 . . . . 5  |-  ( E. x  e.  On  E. y  e.  On  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y )  <->  ( E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y ) )
26 simprl 755 . . . . . . . . . . . . 13  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  ( rank `  ( A  u.  B )
)  =  suc  x
)
27 simpr 461 . . . . . . . . . . . . . . . . . 18  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  ( rank `  ( A  u.  B ) )  =  suc  x )  -> 
( rank `  ( A  u.  B ) )  =  suc  x )
28 rankuni 8062 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( rank `  U. U. ( A  X.  B ) )  =  U. ( rank `  U. ( A  X.  B ) )
29 rankuni 8062 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( rank `  U. ( A  X.  B ) )  = 
U. ( rank `  ( A  X.  B ) )
3029unieqi 4095 . . . . . . . . . . . . . . . . . . . . . 22  |-  U. ( rank `  U. ( A  X.  B ) )  =  U. U. ( rank `  ( A  X.  B ) )
3128, 30eqtri 2458 . . . . . . . . . . . . . . . . . . . . 21  |-  ( rank `  U. U. ( A  X.  B ) )  =  U. U. ( rank `  ( A  X.  B ) )
32 df-ne 2603 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  X.  B )  =/=  (/)  <->  -.  ( A  X.  B )  =  (/) )
3319, 20xpex 6503 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( A  X.  B )  e. 
_V
3433rankeq0 8060 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  X.  B )  =  (/)  <->  ( rank `  ( A  X.  B ) )  =  (/) )
3534notbii 296 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( -.  ( A  X.  B
)  =  (/)  <->  -.  ( rank `  ( A  X.  B ) )  =  (/) )
3632, 35bitr2i 250 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  <->  ( A  X.  B )  =/=  (/) )
378, 36sylib 196 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( A  X.  B )  =/=  (/) )
38 unixp 5365 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  X.  B )  =/=  (/)  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
3937, 38syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
4039fveq2d 5690 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( rank `  U. U. ( A  X.  B
) )  =  (
rank `  ( A  u.  B ) ) )
4131, 40syl5reqr 2485 . . . . . . . . . . . . . . . . . . . 20  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( rank `  ( A  u.  B )
)  =  U. U. ( rank `  ( A  X.  B ) ) )
42 eqimss 3403 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
rank `  ( A  u.  B ) )  = 
U. U. ( rank `  ( A  X.  B ) )  ->  ( rank `  ( A  u.  B )
)  C_  U. U. ( rank `  ( A  X.  B ) ) )
4341, 42syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( rank `  ( A  u.  B )
)  C_  U. U. ( rank `  ( A  X.  B ) ) )
4443adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  ( rank `  ( A  u.  B ) )  =  suc  x )  -> 
( rank `  ( A  u.  B ) )  C_  U.
U. ( rank `  ( A  X.  B ) ) )
4527, 44eqsstr3d 3386 . . . . . . . . . . . . . . . . 17  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  ( rank `  ( A  u.  B ) )  =  suc  x )  ->  suc  x  C_  U. U. ( rank `  ( A  X.  B ) ) )
4645adantrr 716 . . . . . . . . . . . . . . . 16  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  x  C_  U. U. ( rank `  ( A  X.  B ) ) )
47 limuni 4774 . . . . . . . . . . . . . . . . 17  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  U. ( rank `  ( A  X.  B ) )  =  U. U. ( rank `  ( A  X.  B ) ) )
4847adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  U. ( rank `  ( A  X.  B ) )  =  U. U. ( rank `  ( A  X.  B ) ) )
4946, 48sseqtr4d 3388 . . . . . . . . . . . . . . 15  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  x  C_  U. ( rank `  ( A  X.  B ) ) )
50 vex 2970 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
51 rankon 7994 . . . . . . . . . . . . . . . . . 18  |-  ( rank `  ( A  X.  B
) )  e.  On
5251onordi 4818 . . . . . . . . . . . . . . . . 17  |-  Ord  ( rank `  ( A  X.  B ) )
53 orduni 6400 . . . . . . . . . . . . . . . . 17  |-  ( Ord  ( rank `  ( A  X.  B ) )  ->  Ord  U. ( rank `  ( A  X.  B ) ) )
5452, 53ax-mp 5 . . . . . . . . . . . . . . . 16  |-  Ord  U. ( rank `  ( A  X.  B ) )
55 ordelsuc 6426 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  _V  /\  Ord  U. ( rank `  ( A  X.  B ) ) )  ->  ( x  e.  U. ( rank `  ( A  X.  B ) )  <->  suc  x  C_  U. ( rank `  ( A  X.  B ) ) ) )
5650, 54, 55mp2an 672 . . . . . . . . . . . . . . 15  |-  ( x  e.  U. ( rank `  ( A  X.  B
) )  <->  suc  x  C_  U. ( rank `  ( A  X.  B ) ) )
5749, 56sylibr 212 . . . . . . . . . . . . . 14  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  x  e.  U. ( rank `  ( A  X.  B ) ) )
58 limsuc 6455 . . . . . . . . . . . . . . 15  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( x  e. 
U. ( rank `  ( A  X.  B ) )  <->  suc  x  e.  U. ( rank `  ( A  X.  B ) ) ) )
5958adantr 465 . . . . . . . . . . . . . 14  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  ( x  e. 
U. ( rank `  ( A  X.  B ) )  <->  suc  x  e.  U. ( rank `  ( A  X.  B ) ) ) )
6057, 59mpbid 210 . . . . . . . . . . . . 13  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  x  e.  U. ( rank `  ( A  X.  B ) ) )
6126, 60eqeltrd 2512 . . . . . . . . . . . 12  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  ( rank `  ( A  u.  B )
)  e.  U. ( rank `  ( A  X.  B ) ) )
62 limsuc 6455 . . . . . . . . . . . . 13  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( ( rank `  ( A  u.  B
) )  e.  U. ( rank `  ( A  X.  B ) )  <->  suc  ( rank `  ( A  u.  B
) )  e.  U. ( rank `  ( A  X.  B ) ) ) )
6362adantr 465 . . . . . . . . . . . 12  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  ( ( rank `  ( A  u.  B
) )  e.  U. ( rank `  ( A  X.  B ) )  <->  suc  ( rank `  ( A  u.  B
) )  e.  U. ( rank `  ( A  X.  B ) ) ) )
6461, 63mpbid 210 . . . . . . . . . . 11  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  ( rank `  ( A  u.  B
) )  e.  U. ( rank `  ( A  X.  B ) ) )
65 ordsucelsuc 6428 . . . . . . . . . . . 12  |-  ( Ord  U. ( rank `  ( A  X.  B ) )  ->  ( suc  ( rank `  ( A  u.  B ) )  e. 
U. ( rank `  ( A  X.  B ) )  <->  suc  suc  ( rank `  ( A  u.  B )
)  e.  suc  U. ( rank `  ( A  X.  B ) ) ) )
6654, 65ax-mp 5 . . . . . . . . . . 11  |-  ( suc  ( rank `  ( A  u.  B )
)  e.  U. ( rank `  ( A  X.  B ) )  <->  suc  suc  ( rank `  ( A  u.  B ) )  e. 
suc  U. ( rank `  ( A  X.  B ) ) )
6764, 66sylib 196 . . . . . . . . . 10  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  suc  ( rank `  ( A  u.  B
) )  e.  suc  U. ( rank `  ( A  X.  B ) ) )
68 onsucuni2 6440 . . . . . . . . . . . 12  |-  ( ( ( rank `  ( A  X.  B ) )  e.  On  /\  ( rank `  ( A  X.  B ) )  =  suc  y )  ->  suc  U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  X.  B ) ) )
6951, 68mpan 670 . . . . . . . . . . 11  |-  ( (
rank `  ( A  X.  B ) )  =  suc  y  ->  suc  U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  X.  B ) ) )
7069ad2antll 728 . . . . . . . . . 10  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  X.  B ) ) )
7167, 70eleqtrd 2514 . . . . . . . . 9  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  suc  ( rank `  ( A  u.  B
) )  e.  (
rank `  ( A  X.  B ) ) )
7211, 51onsucssi 6447 . . . . . . . . 9  |-  ( suc 
suc  ( rank `  ( A  u.  B )
)  e.  ( rank `  ( A  X.  B
) )  <->  suc  suc  suc  ( rank `  ( A  u.  B ) )  C_  ( rank `  ( A  X.  B ) ) )
7371, 72sylib 196 . . . . . . . 8  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  suc  suc  ( rank `  ( A  u.  B ) )  C_  ( rank `  ( A  X.  B ) ) )
7473ex 434 . . . . . . 7  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( ( (
rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y )  ->  suc  suc  suc  ( rank `  ( A  u.  B
) )  C_  ( rank `  ( A  X.  B ) ) ) )
7574a1d 25 . . . . . 6  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( ( x  e.  On  /\  y  e.  On )  ->  (
( ( rank `  ( A  u.  B )
)  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y )  ->  suc  suc  suc  ( rank `  ( A  u.  B ) )  C_  ( rank `  ( A  X.  B ) ) ) ) )
7675rexlimdvv 2842 . . . . 5  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( E. x  e.  On  E. y  e.  On  ( ( rank `  ( A  u.  B
) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y )  ->  suc  suc  suc  ( rank `  ( A  u.  B ) )  C_  ( rank `  ( A  X.  B ) ) ) )
7725, 76syl5bir 218 . . . 4  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( ( E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y )  ->  suc  suc  suc  ( rank `  ( A  u.  B
) )  C_  ( rank `  ( A  X.  B ) ) ) )
7824, 77mtoi 178 . . 3  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  -.  ( E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y ) )
79 ianor 488 . . . . . 6  |-  ( -.  ( E. x  e.  On  ( rank `  ( A  u.  B )
)  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y )  <->  ( -.  E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  \/  -.  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y ) )
80 un00 3709 . . . . . . . . . . . . . 14  |-  ( ( A  =  (/)  /\  B  =  (/) )  <->  ( A  u.  B )  =  (/) )
81 olc 384 . . . . . . . . . . . . . . 15  |-  ( B  =  (/)  ->  ( A  =  (/)  \/  B  =  (/) ) )
8281adantl 466 . . . . . . . . . . . . . 14  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  ( A  =  (/)  \/  B  =  (/) ) )
8380, 82sylbir 213 . . . . . . . . . . . . 13  |-  ( ( A  u.  B )  =  (/)  ->  ( A  =  (/)  \/  B  =  (/) ) )
84 xpeq0 5253 . . . . . . . . . . . . 13  |-  ( ( A  X.  B )  =  (/)  <->  ( A  =  (/)  \/  B  =  (/) ) )
8583, 84sylibr 212 . . . . . . . . . . . 12  |-  ( ( A  u.  B )  =  (/)  ->  ( A  X.  B )  =  (/) )
8685con3i 135 . . . . . . . . . . 11  |-  ( -.  ( A  X.  B
)  =  (/)  ->  -.  ( A  u.  B
)  =  (/) )
8735, 86sylbir 213 . . . . . . . . . 10  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  -.  ( A  u.  B )  =  (/) )
8819, 20unex 6373 . . . . . . . . . . . 12  |-  ( A  u.  B )  e. 
_V
8988rankeq0 8060 . . . . . . . . . . 11  |-  ( ( A  u.  B )  =  (/)  <->  ( rank `  ( A  u.  B )
)  =  (/) )
9089notbii 296 . . . . . . . . . 10  |-  ( -.  ( A  u.  B
)  =  (/)  <->  -.  ( rank `  ( A  u.  B ) )  =  (/) )
9187, 90sylib 196 . . . . . . . . 9  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  -.  ( rank `  ( A  u.  B ) )  =  (/) )
929onordi 4818 . . . . . . . . . . 11  |-  Ord  ( rank `  ( A  u.  B ) )
93 ordzsl 6451 . . . . . . . . . . 11  |-  ( Ord  ( rank `  ( A  u.  B )
)  <->  ( ( rank `  ( A  u.  B
) )  =  (/)  \/ 
E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  \/  Lim  ( rank `  ( A  u.  B ) ) ) )
9492, 93mpbi 208 . . . . . . . . . 10  |-  ( (
rank `  ( A  u.  B ) )  =  (/)  \/  E. x  e.  On  ( rank `  ( A  u.  B )
)  =  suc  x  \/  Lim  ( rank `  ( A  u.  B )
) )
95943ori 1278 . . . . . . . . 9  |-  ( ( -.  ( rank `  ( A  u.  B )
)  =  (/)  /\  -.  E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x )  ->  Lim  ( rank `  ( A  u.  B )
) )
9691, 95sylan 471 . . . . . . . 8  |-  ( ( -.  ( rank `  ( A  X.  B ) )  =  (/)  /\  -.  E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x )  ->  Lim  ( rank `  ( A  u.  B )
) )
9796ex 434 . . . . . . 7  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( -. 
E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  ->  Lim  ( rank `  ( A  u.  B ) ) ) )
98 ordzsl 6451 . . . . . . . . . 10  |-  ( Ord  ( rank `  ( A  X.  B ) )  <-> 
( ( rank `  ( A  X.  B ) )  =  (/)  \/  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y  \/ 
Lim  ( rank `  ( A  X.  B ) ) ) )
9952, 98mpbi 208 . . . . . . . . 9  |-  ( (
rank `  ( A  X.  B ) )  =  (/)  \/  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y  \/ 
Lim  ( rank `  ( A  X.  B ) ) )
100993ori 1278 . . . . . . . 8  |-  ( ( -.  ( rank `  ( A  X.  B ) )  =  (/)  /\  -.  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y )  ->  Lim  ( rank `  ( A  X.  B ) ) )
101100ex 434 . . . . . . 7  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( -. 
E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y  ->  Lim  ( rank `  ( A  X.  B ) ) ) )
10297, 101orim12d 834 . . . . . 6  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( ( -.  E. x  e.  On  ( rank `  ( A  u.  B )
)  =  suc  x  \/  -.  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y )  ->  ( Lim  ( rank `  ( A  u.  B ) )  \/ 
Lim  ( rank `  ( A  X.  B ) ) ) ) )
10379, 102syl5bi 217 . . . . 5  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( -.  ( E. x  e.  On  ( rank `  ( A  u.  B )
)  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y )  -> 
( Lim  ( rank `  ( A  u.  B
) )  \/  Lim  ( rank `  ( A  X.  B ) ) ) ) )
104103imp 429 . . . 4  |-  ( ( -.  ( rank `  ( A  X.  B ) )  =  (/)  /\  -.  ( E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  ( Lim  ( rank `  ( A  u.  B ) )  \/ 
Lim  ( rank `  ( A  X.  B ) ) ) )
105 simpl 457 . . . . . . . 8  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  -.  ( rank `  ( A  X.  B ) )  =  (/) )  ->  Lim  ( rank `  ( A  u.  B ) ) )
10634necon3abii 2633 . . . . . . . . . 10  |-  ( ( A  X.  B )  =/=  (/)  <->  -.  ( rank `  ( A  X.  B
) )  =  (/) )
10719, 20rankxplim 8078 . . . . . . . . . 10  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  ( A  X.  B )  =/=  (/) )  -> 
( rank `  ( A  X.  B ) )  =  ( rank `  ( A  u.  B )
) )
108106, 107sylan2br 476 . . . . . . . . 9  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  -.  ( rank `  ( A  X.  B ) )  =  (/) )  ->  ( rank `  ( A  X.  B
) )  =  (
rank `  ( A  u.  B ) ) )
109 limeq 4726 . . . . . . . . 9  |-  ( (
rank `  ( A  X.  B ) )  =  ( rank `  ( A  u.  B )
)  ->  ( Lim  ( rank `  ( A  X.  B ) )  <->  Lim  ( rank `  ( A  u.  B
) ) ) )
110108, 109syl 16 . . . . . . . 8  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  -.  ( rank `  ( A  X.  B ) )  =  (/) )  ->  ( Lim  ( rank `  ( A  X.  B ) )  <->  Lim  ( rank `  ( A  u.  B )
) ) )
111105, 110mpbird 232 . . . . . . 7  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  -.  ( rank `  ( A  X.  B ) )  =  (/) )  ->  Lim  ( rank `  ( A  X.  B ) ) )
112111expcom 435 . . . . . 6  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( Lim  ( rank `  ( A  u.  B )
)  ->  Lim  ( rank `  ( A  X.  B
) ) ) )
113 idd 24 . . . . . 6  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  ( rank `  ( A  X.  B
) ) ) )
114112, 113jaod 380 . . . . 5  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( ( Lim  ( rank `  ( A  u.  B )
)  \/  Lim  ( rank `  ( A  X.  B ) ) )  ->  Lim  ( rank `  ( A  X.  B
) ) ) )
115114adantr 465 . . . 4  |-  ( ( -.  ( rank `  ( A  X.  B ) )  =  (/)  /\  -.  ( E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  ( ( Lim  ( rank `  ( A  u.  B )
)  \/  Lim  ( rank `  ( A  X.  B ) ) )  ->  Lim  ( rank `  ( A  X.  B
) ) ) )
116104, 115mpd 15 . . 3  |-  ( ( -.  ( rank `  ( A  X.  B ) )  =  (/)  /\  -.  ( E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  Lim  ( rank `  ( A  X.  B
) ) )
1178, 78, 116syl2anc 661 . 2  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  Lim  ( rank `  ( A  X.  B
) ) )
1181, 117impbii 188 1  |-  ( Lim  ( rank `  ( A  X.  B ) )  <->  Lim  U. ( rank `  ( A  X.  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    \/ w3o 964    = wceq 1369    e. wcel 1756    =/= wne 2601   E.wrex 2711   _Vcvv 2967    u. cun 3321    C_ wss 3323   (/)c0 3632   U.cuni 4086   Ord word 4713   Oncon0 4714   Lim wlim 4715   suc csuc 4716    X. cxp 4833   ` cfv 5413   rankcrnk 7962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-reg 7799  ax-inf2 7839
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-om 6472  df-recs 6824  df-rdg 6858  df-r1 7963  df-rank 7964
This theorem is referenced by:  rankxpsuc  8081
  Copyright terms: Public domain W3C validator