MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxplim3 Structured version   Visualization version   Unicode version

Theorem rankxplim3 8352
Description: The rank of a Cartesian product is a limit ordinal iff its union is. (Contributed by NM, 19-Sep-2006.)
Hypotheses
Ref Expression
rankxplim.1  |-  A  e. 
_V
rankxplim.2  |-  B  e. 
_V
Assertion
Ref Expression
rankxplim3  |-  ( Lim  ( rank `  ( A  X.  B ) )  <->  Lim  U. ( rank `  ( A  X.  B ) ) )

Proof of Theorem rankxplim3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limuni2 5484 . 2  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  U. ( rank `  ( A  X.  B ) ) )
2 0ellim 5485 . . . 4  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  (/)  e.  U. ( rank `  ( A  X.  B ) ) )
3 n0i 3736 . . . 4  |-  ( (/)  e.  U. ( rank `  ( A  X.  B ) )  ->  -.  U. ( rank `  ( A  X.  B ) )  =  (/) )
4 unieq 4206 . . . . . 6  |-  ( (
rank `  ( A  X.  B ) )  =  (/)  ->  U. ( rank `  ( A  X.  B ) )  =  U. (/) )
5 uni0 4225 . . . . . 6  |-  U. (/)  =  (/)
64, 5syl6eq 2501 . . . . 5  |-  ( (
rank `  ( A  X.  B ) )  =  (/)  ->  U. ( rank `  ( A  X.  B ) )  =  (/) )
76con3i 141 . . . 4  |-  ( -. 
U. ( rank `  ( A  X.  B ) )  =  (/)  ->  -.  ( rank `  ( A  X.  B ) )  =  (/) )
82, 3, 73syl 18 . . 3  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  -.  ( rank `  ( A  X.  B
) )  =  (/) )
9 rankon 8266 . . . . . . . . . 10  |-  ( rank `  ( A  u.  B
) )  e.  On
109onsuci 6665 . . . . . . . . 9  |-  suc  ( rank `  ( A  u.  B ) )  e.  On
1110onsuci 6665 . . . . . . . 8  |-  suc  suc  ( rank `  ( A  u.  B ) )  e.  On
1211elexi 3055 . . . . . . 7  |-  suc  suc  ( rank `  ( A  u.  B ) )  e. 
_V
1312sucid 5502 . . . . . 6  |-  suc  suc  ( rank `  ( A  u.  B ) )  e. 
suc  suc  suc  ( rank `  ( A  u.  B
) )
1411onsuci 6665 . . . . . . . 8  |-  suc  suc  suc  ( rank `  ( A  u.  B )
)  e.  On
15 ontri1 5457 . . . . . . . 8  |-  ( ( suc  suc  suc  ( rank `  ( A  u.  B
) )  e.  On  /\ 
suc  suc  ( rank `  ( A  u.  B )
)  e.  On )  ->  ( suc  suc  suc  ( rank `  ( A  u.  B )
)  C_  suc  suc  ( rank `  ( A  u.  B ) )  <->  -.  suc  suc  ( rank `  ( A  u.  B ) )  e. 
suc  suc  suc  ( rank `  ( A  u.  B
) ) ) )
1614, 11, 15mp2an 678 . . . . . . 7  |-  ( suc 
suc  suc  ( rank `  ( A  u.  B )
)  C_  suc  suc  ( rank `  ( A  u.  B ) )  <->  -.  suc  suc  ( rank `  ( A  u.  B ) )  e. 
suc  suc  suc  ( rank `  ( A  u.  B
) ) )
1716con2bii 334 . . . . . 6  |-  ( suc 
suc  ( rank `  ( A  u.  B )
)  e.  suc  suc  suc  ( rank `  ( A  u.  B )
)  <->  -.  suc  suc  suc  ( rank `  ( A  u.  B ) )  C_  suc  suc  ( rank `  ( A  u.  B )
) )
1813, 17mpbi 212 . . . . 5  |-  -.  suc  suc 
suc  ( rank `  ( A  u.  B )
)  C_  suc  suc  ( rank `  ( A  u.  B ) )
19 rankxplim.1 . . . . . . 7  |-  A  e. 
_V
20 rankxplim.2 . . . . . . 7  |-  B  e. 
_V
2119, 20rankxpu 8347 . . . . . 6  |-  ( rank `  ( A  X.  B
) )  C_  suc  suc  ( rank `  ( A  u.  B )
)
22 sstr 3440 . . . . . 6  |-  ( ( suc  suc  suc  ( rank `  ( A  u.  B
) )  C_  ( rank `  ( A  X.  B ) )  /\  ( rank `  ( A  X.  B ) )  C_  suc  suc  ( rank `  ( A  u.  B )
) )  ->  suc  suc 
suc  ( rank `  ( A  u.  B )
)  C_  suc  suc  ( rank `  ( A  u.  B ) ) )
2321, 22mpan2 677 . . . . 5  |-  ( suc 
suc  suc  ( rank `  ( A  u.  B )
)  C_  ( rank `  ( A  X.  B
) )  ->  suc  suc 
suc  ( rank `  ( A  u.  B )
)  C_  suc  suc  ( rank `  ( A  u.  B ) ) )
2418, 23mto 180 . . . 4  |-  -.  suc  suc 
suc  ( rank `  ( A  u.  B )
)  C_  ( rank `  ( A  X.  B
) )
25 reeanv 2958 . . . . 5  |-  ( E. x  e.  On  E. y  e.  On  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y )  <->  ( E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y ) )
26 simprl 764 . . . . . . . . . . . . 13  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  ( rank `  ( A  u.  B )
)  =  suc  x
)
27 simpr 463 . . . . . . . . . . . . . . . . . 18  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  ( rank `  ( A  u.  B ) )  =  suc  x )  -> 
( rank `  ( A  u.  B ) )  =  suc  x )
28 rankuni 8334 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( rank `  U. U. ( A  X.  B ) )  =  U. ( rank `  U. ( A  X.  B ) )
29 rankuni 8334 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( rank `  U. ( A  X.  B ) )  = 
U. ( rank `  ( A  X.  B ) )
3029unieqi 4207 . . . . . . . . . . . . . . . . . . . . . 22  |-  U. ( rank `  U. ( A  X.  B ) )  =  U. U. ( rank `  ( A  X.  B ) )
3128, 30eqtri 2473 . . . . . . . . . . . . . . . . . . . . 21  |-  ( rank `  U. U. ( A  X.  B ) )  =  U. U. ( rank `  ( A  X.  B ) )
32 df-ne 2624 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  X.  B )  =/=  (/)  <->  -.  ( A  X.  B )  =  (/) )
3319, 20xpex 6595 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( A  X.  B )  e. 
_V
3433rankeq0 8332 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  X.  B )  =  (/)  <->  ( rank `  ( A  X.  B ) )  =  (/) )
3534notbii 298 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( -.  ( A  X.  B
)  =  (/)  <->  -.  ( rank `  ( A  X.  B ) )  =  (/) )
3632, 35bitr2i 254 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  <->  ( A  X.  B )  =/=  (/) )
378, 36sylib 200 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( A  X.  B )  =/=  (/) )
38 unixp 5369 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  X.  B )  =/=  (/)  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
3937, 38syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
4039fveq2d 5869 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( rank `  U. U. ( A  X.  B
) )  =  (
rank `  ( A  u.  B ) ) )
4131, 40syl5reqr 2500 . . . . . . . . . . . . . . . . . . . 20  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( rank `  ( A  u.  B )
)  =  U. U. ( rank `  ( A  X.  B ) ) )
42 eqimss 3484 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
rank `  ( A  u.  B ) )  = 
U. U. ( rank `  ( A  X.  B ) )  ->  ( rank `  ( A  u.  B )
)  C_  U. U. ( rank `  ( A  X.  B ) ) )
4341, 42syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( rank `  ( A  u.  B )
)  C_  U. U. ( rank `  ( A  X.  B ) ) )
4443adantr 467 . . . . . . . . . . . . . . . . . 18  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  ( rank `  ( A  u.  B ) )  =  suc  x )  -> 
( rank `  ( A  u.  B ) )  C_  U.
U. ( rank `  ( A  X.  B ) ) )
4527, 44eqsstr3d 3467 . . . . . . . . . . . . . . . . 17  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  ( rank `  ( A  u.  B ) )  =  suc  x )  ->  suc  x  C_  U. U. ( rank `  ( A  X.  B ) ) )
4645adantrr 723 . . . . . . . . . . . . . . . 16  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  x  C_  U. U. ( rank `  ( A  X.  B ) ) )
47 limuni 5483 . . . . . . . . . . . . . . . . 17  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  U. ( rank `  ( A  X.  B ) )  =  U. U. ( rank `  ( A  X.  B ) ) )
4847adantr 467 . . . . . . . . . . . . . . . 16  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  U. ( rank `  ( A  X.  B ) )  =  U. U. ( rank `  ( A  X.  B ) ) )
4946, 48sseqtr4d 3469 . . . . . . . . . . . . . . 15  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  x  C_  U. ( rank `  ( A  X.  B ) ) )
50 vex 3048 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
51 rankon 8266 . . . . . . . . . . . . . . . . . 18  |-  ( rank `  ( A  X.  B
) )  e.  On
5251onordi 5527 . . . . . . . . . . . . . . . . 17  |-  Ord  ( rank `  ( A  X.  B ) )
53 orduni 6621 . . . . . . . . . . . . . . . . 17  |-  ( Ord  ( rank `  ( A  X.  B ) )  ->  Ord  U. ( rank `  ( A  X.  B ) ) )
5452, 53ax-mp 5 . . . . . . . . . . . . . . . 16  |-  Ord  U. ( rank `  ( A  X.  B ) )
55 ordelsuc 6647 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  _V  /\  Ord  U. ( rank `  ( A  X.  B ) ) )  ->  ( x  e.  U. ( rank `  ( A  X.  B ) )  <->  suc  x  C_  U. ( rank `  ( A  X.  B ) ) ) )
5650, 54, 55mp2an 678 . . . . . . . . . . . . . . 15  |-  ( x  e.  U. ( rank `  ( A  X.  B
) )  <->  suc  x  C_  U. ( rank `  ( A  X.  B ) ) )
5749, 56sylibr 216 . . . . . . . . . . . . . 14  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  x  e.  U. ( rank `  ( A  X.  B ) ) )
58 limsuc 6676 . . . . . . . . . . . . . . 15  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( x  e. 
U. ( rank `  ( A  X.  B ) )  <->  suc  x  e.  U. ( rank `  ( A  X.  B ) ) ) )
5958adantr 467 . . . . . . . . . . . . . 14  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  ( x  e. 
U. ( rank `  ( A  X.  B ) )  <->  suc  x  e.  U. ( rank `  ( A  X.  B ) ) ) )
6057, 59mpbid 214 . . . . . . . . . . . . 13  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  x  e.  U. ( rank `  ( A  X.  B ) ) )
6126, 60eqeltrd 2529 . . . . . . . . . . . 12  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  ( rank `  ( A  u.  B )
)  e.  U. ( rank `  ( A  X.  B ) ) )
62 limsuc 6676 . . . . . . . . . . . . 13  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( ( rank `  ( A  u.  B
) )  e.  U. ( rank `  ( A  X.  B ) )  <->  suc  ( rank `  ( A  u.  B
) )  e.  U. ( rank `  ( A  X.  B ) ) ) )
6362adantr 467 . . . . . . . . . . . 12  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  ( ( rank `  ( A  u.  B
) )  e.  U. ( rank `  ( A  X.  B ) )  <->  suc  ( rank `  ( A  u.  B
) )  e.  U. ( rank `  ( A  X.  B ) ) ) )
6461, 63mpbid 214 . . . . . . . . . . 11  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  ( rank `  ( A  u.  B
) )  e.  U. ( rank `  ( A  X.  B ) ) )
65 ordsucelsuc 6649 . . . . . . . . . . . 12  |-  ( Ord  U. ( rank `  ( A  X.  B ) )  ->  ( suc  ( rank `  ( A  u.  B ) )  e. 
U. ( rank `  ( A  X.  B ) )  <->  suc  suc  ( rank `  ( A  u.  B )
)  e.  suc  U. ( rank `  ( A  X.  B ) ) ) )
6654, 65ax-mp 5 . . . . . . . . . . 11  |-  ( suc  ( rank `  ( A  u.  B )
)  e.  U. ( rank `  ( A  X.  B ) )  <->  suc  suc  ( rank `  ( A  u.  B ) )  e. 
suc  U. ( rank `  ( A  X.  B ) ) )
6764, 66sylib 200 . . . . . . . . . 10  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  suc  ( rank `  ( A  u.  B
) )  e.  suc  U. ( rank `  ( A  X.  B ) ) )
68 onsucuni2 6661 . . . . . . . . . . . 12  |-  ( ( ( rank `  ( A  X.  B ) )  e.  On  /\  ( rank `  ( A  X.  B ) )  =  suc  y )  ->  suc  U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  X.  B ) ) )
6951, 68mpan 676 . . . . . . . . . . 11  |-  ( (
rank `  ( A  X.  B ) )  =  suc  y  ->  suc  U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  X.  B ) ) )
7069ad2antll 735 . . . . . . . . . 10  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  X.  B ) ) )
7167, 70eleqtrd 2531 . . . . . . . . 9  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  suc  ( rank `  ( A  u.  B
) )  e.  (
rank `  ( A  X.  B ) ) )
7211, 51onsucssi 6668 . . . . . . . . 9  |-  ( suc 
suc  ( rank `  ( A  u.  B )
)  e.  ( rank `  ( A  X.  B
) )  <->  suc  suc  suc  ( rank `  ( A  u.  B ) )  C_  ( rank `  ( A  X.  B ) ) )
7371, 72sylib 200 . . . . . . . 8  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  suc  suc  ( rank `  ( A  u.  B ) )  C_  ( rank `  ( A  X.  B ) ) )
7473ex 436 . . . . . . 7  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( ( (
rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y )  ->  suc  suc  suc  ( rank `  ( A  u.  B
) )  C_  ( rank `  ( A  X.  B ) ) ) )
7574a1d 26 . . . . . 6  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( ( x  e.  On  /\  y  e.  On )  ->  (
( ( rank `  ( A  u.  B )
)  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y )  ->  suc  suc  suc  ( rank `  ( A  u.  B ) )  C_  ( rank `  ( A  X.  B ) ) ) ) )
7675rexlimdvv 2885 . . . . 5  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( E. x  e.  On  E. y  e.  On  ( ( rank `  ( A  u.  B
) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y )  ->  suc  suc  suc  ( rank `  ( A  u.  B ) )  C_  ( rank `  ( A  X.  B ) ) ) )
7725, 76syl5bir 222 . . . 4  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( ( E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y )  ->  suc  suc  suc  ( rank `  ( A  u.  B
) )  C_  ( rank `  ( A  X.  B ) ) ) )
7824, 77mtoi 182 . . 3  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  -.  ( E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y ) )
79 ianor 491 . . . . . 6  |-  ( -.  ( E. x  e.  On  ( rank `  ( A  u.  B )
)  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y )  <->  ( -.  E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  \/  -.  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y ) )
80 un00 3800 . . . . . . . . . . . . . 14  |-  ( ( A  =  (/)  /\  B  =  (/) )  <->  ( A  u.  B )  =  (/) )
81 olc 386 . . . . . . . . . . . . . . 15  |-  ( B  =  (/)  ->  ( A  =  (/)  \/  B  =  (/) ) )
8281adantl 468 . . . . . . . . . . . . . 14  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  ( A  =  (/)  \/  B  =  (/) ) )
8380, 82sylbir 217 . . . . . . . . . . . . 13  |-  ( ( A  u.  B )  =  (/)  ->  ( A  =  (/)  \/  B  =  (/) ) )
84 xpeq0 5257 . . . . . . . . . . . . 13  |-  ( ( A  X.  B )  =  (/)  <->  ( A  =  (/)  \/  B  =  (/) ) )
8583, 84sylibr 216 . . . . . . . . . . . 12  |-  ( ( A  u.  B )  =  (/)  ->  ( A  X.  B )  =  (/) )
8685con3i 141 . . . . . . . . . . 11  |-  ( -.  ( A  X.  B
)  =  (/)  ->  -.  ( A  u.  B
)  =  (/) )
8735, 86sylbir 217 . . . . . . . . . 10  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  -.  ( A  u.  B )  =  (/) )
8819, 20unex 6589 . . . . . . . . . . . 12  |-  ( A  u.  B )  e. 
_V
8988rankeq0 8332 . . . . . . . . . . 11  |-  ( ( A  u.  B )  =  (/)  <->  ( rank `  ( A  u.  B )
)  =  (/) )
9089notbii 298 . . . . . . . . . 10  |-  ( -.  ( A  u.  B
)  =  (/)  <->  -.  ( rank `  ( A  u.  B ) )  =  (/) )
9187, 90sylib 200 . . . . . . . . 9  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  -.  ( rank `  ( A  u.  B ) )  =  (/) )
929onordi 5527 . . . . . . . . . . 11  |-  Ord  ( rank `  ( A  u.  B ) )
93 ordzsl 6672 . . . . . . . . . . 11  |-  ( Ord  ( rank `  ( A  u.  B )
)  <->  ( ( rank `  ( A  u.  B
) )  =  (/)  \/ 
E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  \/  Lim  ( rank `  ( A  u.  B ) ) ) )
9492, 93mpbi 212 . . . . . . . . . 10  |-  ( (
rank `  ( A  u.  B ) )  =  (/)  \/  E. x  e.  On  ( rank `  ( A  u.  B )
)  =  suc  x  \/  Lim  ( rank `  ( A  u.  B )
) )
95943ori 1328 . . . . . . . . 9  |-  ( ( -.  ( rank `  ( A  u.  B )
)  =  (/)  /\  -.  E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x )  ->  Lim  ( rank `  ( A  u.  B )
) )
9691, 95sylan 474 . . . . . . . 8  |-  ( ( -.  ( rank `  ( A  X.  B ) )  =  (/)  /\  -.  E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x )  ->  Lim  ( rank `  ( A  u.  B )
) )
9796ex 436 . . . . . . 7  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( -. 
E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  ->  Lim  ( rank `  ( A  u.  B ) ) ) )
98 ordzsl 6672 . . . . . . . . . 10  |-  ( Ord  ( rank `  ( A  X.  B ) )  <-> 
( ( rank `  ( A  X.  B ) )  =  (/)  \/  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y  \/ 
Lim  ( rank `  ( A  X.  B ) ) ) )
9952, 98mpbi 212 . . . . . . . . 9  |-  ( (
rank `  ( A  X.  B ) )  =  (/)  \/  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y  \/ 
Lim  ( rank `  ( A  X.  B ) ) )
100993ori 1328 . . . . . . . 8  |-  ( ( -.  ( rank `  ( A  X.  B ) )  =  (/)  /\  -.  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y )  ->  Lim  ( rank `  ( A  X.  B ) ) )
101100ex 436 . . . . . . 7  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( -. 
E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y  ->  Lim  ( rank `  ( A  X.  B ) ) ) )
10297, 101orim12d 849 . . . . . 6  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( ( -.  E. x  e.  On  ( rank `  ( A  u.  B )
)  =  suc  x  \/  -.  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y )  ->  ( Lim  ( rank `  ( A  u.  B ) )  \/ 
Lim  ( rank `  ( A  X.  B ) ) ) ) )
10379, 102syl5bi 221 . . . . 5  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( -.  ( E. x  e.  On  ( rank `  ( A  u.  B )
)  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y )  -> 
( Lim  ( rank `  ( A  u.  B
) )  \/  Lim  ( rank `  ( A  X.  B ) ) ) ) )
104103imp 431 . . . 4  |-  ( ( -.  ( rank `  ( A  X.  B ) )  =  (/)  /\  -.  ( E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  ( Lim  ( rank `  ( A  u.  B ) )  \/ 
Lim  ( rank `  ( A  X.  B ) ) ) )
105 simpl 459 . . . . . . . 8  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  -.  ( rank `  ( A  X.  B ) )  =  (/) )  ->  Lim  ( rank `  ( A  u.  B ) ) )
10634necon3abii 2670 . . . . . . . . . 10  |-  ( ( A  X.  B )  =/=  (/)  <->  -.  ( rank `  ( A  X.  B
) )  =  (/) )
10719, 20rankxplim 8350 . . . . . . . . . 10  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  ( A  X.  B )  =/=  (/) )  -> 
( rank `  ( A  X.  B ) )  =  ( rank `  ( A  u.  B )
) )
108106, 107sylan2br 479 . . . . . . . . 9  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  -.  ( rank `  ( A  X.  B ) )  =  (/) )  ->  ( rank `  ( A  X.  B
) )  =  (
rank `  ( A  u.  B ) ) )
109 limeq 5435 . . . . . . . . 9  |-  ( (
rank `  ( A  X.  B ) )  =  ( rank `  ( A  u.  B )
)  ->  ( Lim  ( rank `  ( A  X.  B ) )  <->  Lim  ( rank `  ( A  u.  B
) ) ) )
110108, 109syl 17 . . . . . . . 8  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  -.  ( rank `  ( A  X.  B ) )  =  (/) )  ->  ( Lim  ( rank `  ( A  X.  B ) )  <->  Lim  ( rank `  ( A  u.  B )
) ) )
111105, 110mpbird 236 . . . . . . 7  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  -.  ( rank `  ( A  X.  B ) )  =  (/) )  ->  Lim  ( rank `  ( A  X.  B ) ) )
112111expcom 437 . . . . . 6  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( Lim  ( rank `  ( A  u.  B )
)  ->  Lim  ( rank `  ( A  X.  B
) ) ) )
113 idd 25 . . . . . 6  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  ( rank `  ( A  X.  B
) ) ) )
114112, 113jaod 382 . . . . 5  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( ( Lim  ( rank `  ( A  u.  B )
)  \/  Lim  ( rank `  ( A  X.  B ) ) )  ->  Lim  ( rank `  ( A  X.  B
) ) ) )
115114adantr 467 . . . 4  |-  ( ( -.  ( rank `  ( A  X.  B ) )  =  (/)  /\  -.  ( E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  ( ( Lim  ( rank `  ( A  u.  B )
)  \/  Lim  ( rank `  ( A  X.  B ) ) )  ->  Lim  ( rank `  ( A  X.  B
) ) ) )
116104, 115mpd 15 . . 3  |-  ( ( -.  ( rank `  ( A  X.  B ) )  =  (/)  /\  -.  ( E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  Lim  ( rank `  ( A  X.  B
) ) )
1178, 78, 116syl2anc 667 . 2  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  Lim  ( rank `  ( A  X.  B
) ) )
1181, 117impbii 191 1  |-  ( Lim  ( rank `  ( A  X.  B ) )  <->  Lim  U. ( rank `  ( A  X.  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    \/ w3o 984    = wceq 1444    e. wcel 1887    =/= wne 2622   E.wrex 2738   _Vcvv 3045    u. cun 3402    C_ wss 3404   (/)c0 3731   U.cuni 4198    X. cxp 4832   Ord word 5422   Oncon0 5423   Lim wlim 5424   suc csuc 5425   ` cfv 5582   rankcrnk 8234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-reg 8107  ax-inf2 8146
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-om 6693  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-r1 8235  df-rank 8236
This theorem is referenced by:  rankxpsuc  8353
  Copyright terms: Public domain W3C validator