MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxplim2 Structured version   Unicode version

Theorem rankxplim2 8248
Description: If the rank of a Cartesian product is a limit ordinal, so is the rank of the union of its arguments. (Contributed by NM, 19-Sep-2006.)
Hypotheses
Ref Expression
rankxplim.1  |-  A  e. 
_V
rankxplim.2  |-  B  e. 
_V
Assertion
Ref Expression
rankxplim2  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  ( rank `  ( A  u.  B
) ) )

Proof of Theorem rankxplim2
StepHypRef Expression
1 0ellim 4881 . . . 4  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  (/)  e.  ( rank `  ( A  X.  B
) ) )
2 n0i 3740 . . . 4  |-  ( (/)  e.  ( rank `  ( A  X.  B ) )  ->  -.  ( rank `  ( A  X.  B
) )  =  (/) )
31, 2syl 17 . . 3  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  -.  ( rank `  ( A  X.  B
) )  =  (/) )
4 df-ne 2598 . . . 4  |-  ( ( A  X.  B )  =/=  (/)  <->  -.  ( A  X.  B )  =  (/) )
5 rankxplim.1 . . . . . . 7  |-  A  e. 
_V
6 rankxplim.2 . . . . . . 7  |-  B  e. 
_V
75, 6xpex 6540 . . . . . 6  |-  ( A  X.  B )  e. 
_V
87rankeq0 8229 . . . . 5  |-  ( ( A  X.  B )  =  (/)  <->  ( rank `  ( A  X.  B ) )  =  (/) )
98notbii 294 . . . 4  |-  ( -.  ( A  X.  B
)  =  (/)  <->  -.  ( rank `  ( A  X.  B ) )  =  (/) )
104, 9bitr2i 250 . . 3  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  <->  ( A  X.  B )  =/=  (/) )
113, 10sylib 196 . 2  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  ( A  X.  B )  =/=  (/) )
12 limuni2 4880 . . . 4  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  U. ( rank `  ( A  X.  B ) ) )
13 limuni2 4880 . . . 4  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  Lim  U. U. ( rank `  ( A  X.  B ) ) )
1412, 13syl 17 . . 3  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  U. U. ( rank `  ( A  X.  B ) ) )
15 rankuni 8231 . . . . . 6  |-  ( rank `  U. U. ( A  X.  B ) )  =  U. ( rank `  U. ( A  X.  B ) )
16 rankuni 8231 . . . . . . 7  |-  ( rank `  U. ( A  X.  B ) )  = 
U. ( rank `  ( A  X.  B ) )
1716unieqi 4197 . . . . . 6  |-  U. ( rank `  U. ( A  X.  B ) )  =  U. U. ( rank `  ( A  X.  B ) )
1815, 17eqtr2i 2430 . . . . 5  |-  U. U. ( rank `  ( A  X.  B ) )  =  ( rank `  U. U. ( A  X.  B
) )
19 unixp 5476 . . . . . 6  |-  ( ( A  X.  B )  =/=  (/)  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
2019fveq2d 5807 . . . . 5  |-  ( ( A  X.  B )  =/=  (/)  ->  ( rank ` 
U. U. ( A  X.  B ) )  =  ( rank `  ( A  u.  B )
) )
2118, 20syl5eq 2453 . . . 4  |-  ( ( A  X.  B )  =/=  (/)  ->  U. U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  u.  B )
) )
22 limeq 4831 . . . 4  |-  ( U. U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  u.  B )
)  ->  ( Lim  U.
U. ( rank `  ( A  X.  B ) )  <->  Lim  ( rank `  ( A  u.  B )
) ) )
2321, 22syl 17 . . 3  |-  ( ( A  X.  B )  =/=  (/)  ->  ( Lim  U.
U. ( rank `  ( A  X.  B ) )  <->  Lim  ( rank `  ( A  u.  B )
) ) )
2414, 23syl5ib 219 . 2  |-  ( ( A  X.  B )  =/=  (/)  ->  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  ( rank `  ( A  u.  B )
) ) )
2511, 24mpcom 34 1  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  ( rank `  ( A  u.  B
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    = wceq 1403    e. wcel 1840    =/= wne 2596   _Vcvv 3056    u. cun 3409   (/)c0 3735   U.cuni 4188   Lim wlim 4820    X. cxp 4938   ` cfv 5523   rankcrnk 8131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-8 1842  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4569  ax-pr 4627  ax-un 6528  ax-reg 7970  ax-inf2 8009
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 973  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-ral 2756  df-rex 2757  df-reu 2758  df-rab 2760  df-v 3058  df-sbc 3275  df-csb 3371  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-pss 3427  df-nul 3736  df-if 3883  df-pw 3954  df-sn 3970  df-pr 3972  df-tp 3974  df-op 3976  df-uni 4189  df-int 4225  df-iun 4270  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4487  df-eprel 4731  df-id 4735  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5487  df-fun 5525  df-fn 5526  df-f 5527  df-f1 5528  df-fo 5529  df-f1o 5530  df-fv 5531  df-om 6637  df-recs 6997  df-rdg 7031  df-r1 8132  df-rank 8133
This theorem is referenced by:  rankxpsuc  8250
  Copyright terms: Public domain W3C validator