MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxplim Unicode version

Theorem rankxplim 7759
Description: The rank of a cross product when the rank of the union of its arguments is a limit ordinal. Part of Exercise 4 of [Kunen] p. 107. See rankxpsuc 7762 for the successor case. (Contributed by NM, 19-Sep-2006.)
Hypotheses
Ref Expression
rankxplim.1  |-  A  e. 
_V
rankxplim.2  |-  B  e. 
_V
Assertion
Ref Expression
rankxplim  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  ( A  X.  B )  =/=  (/) )  -> 
( rank `  ( A  X.  B ) )  =  ( rank `  ( A  u.  B )
) )

Proof of Theorem rankxplim
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwuni 4355 . . . . . . . . . 10  |-  <. x ,  y >.  C_  ~P U.
<. x ,  y >.
2 vex 2919 . . . . . . . . . . . 12  |-  x  e. 
_V
3 vex 2919 . . . . . . . . . . . 12  |-  y  e. 
_V
42, 3uniop 4419 . . . . . . . . . . 11  |-  U. <. x ,  y >.  =  {
x ,  y }
54pweqi 3763 . . . . . . . . . 10  |-  ~P U. <. x ,  y >.  =  ~P { x ,  y }
61, 5sseqtri 3340 . . . . . . . . 9  |-  <. x ,  y >.  C_  ~P { x ,  y }
7 pwuni 4355 . . . . . . . . . . 11  |-  { x ,  y }  C_  ~P U. { x ,  y }
82, 3unipr 3989 . . . . . . . . . . . 12  |-  U. {
x ,  y }  =  ( x  u.  y )
98pweqi 3763 . . . . . . . . . . 11  |-  ~P U. { x ,  y }  =  ~P (
x  u.  y )
107, 9sseqtri 3340 . . . . . . . . . 10  |-  { x ,  y }  C_  ~P ( x  u.  y
)
11 sspwb 4373 . . . . . . . . . 10  |-  ( { x ,  y } 
C_  ~P ( x  u.  y )  <->  ~P { x ,  y }  C_  ~P ~P ( x  u.  y ) )
1210, 11mpbi 200 . . . . . . . . 9  |-  ~P {
x ,  y } 
C_  ~P ~P ( x  u.  y )
136, 12sstri 3317 . . . . . . . 8  |-  <. x ,  y >.  C_  ~P ~P ( x  u.  y
)
142, 3unex 4666 . . . . . . . . . . 11  |-  ( x  u.  y )  e. 
_V
1514pwex 4342 . . . . . . . . . 10  |-  ~P (
x  u.  y )  e.  _V
1615pwex 4342 . . . . . . . . 9  |-  ~P ~P ( x  u.  y
)  e.  _V
1716rankss 7731 . . . . . . . 8  |-  ( <.
x ,  y >.  C_ 
~P ~P ( x  u.  y )  -> 
( rank `  <. x ,  y >. )  C_  ( rank `  ~P ~P (
x  u.  y ) ) )
1813, 17ax-mp 8 . . . . . . 7  |-  ( rank `  <. x ,  y
>. )  C_  ( rank `  ~P ~P ( x  u.  y ) )
19 rankxplim.1 . . . . . . . . . . 11  |-  A  e. 
_V
2019rankel 7721 . . . . . . . . . 10  |-  ( x  e.  A  ->  ( rank `  x )  e.  ( rank `  A
) )
21 rankxplim.2 . . . . . . . . . . 11  |-  B  e. 
_V
2221rankel 7721 . . . . . . . . . 10  |-  ( y  e.  B  ->  ( rank `  y )  e.  ( rank `  B
) )
232, 3, 19, 21rankelun 7754 . . . . . . . . . 10  |-  ( ( ( rank `  x
)  e.  ( rank `  A )  /\  ( rank `  y )  e.  ( rank `  B
) )  ->  ( rank `  ( x  u.  y ) )  e.  ( rank `  ( A  u.  B )
) )
2420, 22, 23syl2an 464 . . . . . . . . 9  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( rank `  (
x  u.  y ) )  e.  ( rank `  ( A  u.  B
) ) )
2524adantl 453 . . . . . . . 8  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( rank `  ( x  u.  y ) )  e.  ( rank `  ( A  u.  B )
) )
26 ranklim 7726 . . . . . . . . . 10  |-  ( Lim  ( rank `  ( A  u.  B )
)  ->  ( ( rank `  ( x  u.  y ) )  e.  ( rank `  ( A  u.  B )
)  <->  ( rank `  ~P ( x  u.  y
) )  e.  (
rank `  ( A  u.  B ) ) ) )
27 ranklim 7726 . . . . . . . . . 10  |-  ( Lim  ( rank `  ( A  u.  B )
)  ->  ( ( rank `  ~P ( x  u.  y ) )  e.  ( rank `  ( A  u.  B )
)  <->  ( rank `  ~P ~P ( x  u.  y
) )  e.  (
rank `  ( A  u.  B ) ) ) )
2826, 27bitrd 245 . . . . . . . . 9  |-  ( Lim  ( rank `  ( A  u.  B )
)  ->  ( ( rank `  ( x  u.  y ) )  e.  ( rank `  ( A  u.  B )
)  <->  ( rank `  ~P ~P ( x  u.  y
) )  e.  (
rank `  ( A  u.  B ) ) ) )
2928adantr 452 . . . . . . . 8  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( ( rank `  (
x  u.  y ) )  e.  ( rank `  ( A  u.  B
) )  <->  ( rank `  ~P ~P ( x  u.  y ) )  e.  ( rank `  ( A  u.  B )
) ) )
3025, 29mpbid 202 . . . . . . 7  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( rank `  ~P ~P (
x  u.  y ) )  e.  ( rank `  ( A  u.  B
) ) )
31 rankon 7677 . . . . . . . 8  |-  ( rank `  <. x ,  y
>. )  e.  On
32 rankon 7677 . . . . . . . 8  |-  ( rank `  ( A  u.  B
) )  e.  On
33 ontr2 4588 . . . . . . . 8  |-  ( ( ( rank `  <. x ,  y >. )  e.  On  /\  ( rank `  ( A  u.  B
) )  e.  On )  ->  ( ( (
rank `  <. x ,  y >. )  C_  ( rank `  ~P ~P (
x  u.  y ) )  /\  ( rank `  ~P ~P ( x  u.  y ) )  e.  ( rank `  ( A  u.  B )
) )  ->  ( rank `  <. x ,  y
>. )  e.  ( rank `  ( A  u.  B ) ) ) )
3431, 32, 33mp2an 654 . . . . . . 7  |-  ( ( ( rank `  <. x ,  y >. )  C_  ( rank `  ~P ~P ( x  u.  y
) )  /\  ( rank `  ~P ~P (
x  u.  y ) )  e.  ( rank `  ( A  u.  B
) ) )  -> 
( rank `  <. x ,  y >. )  e.  (
rank `  ( A  u.  B ) ) )
3518, 30, 34sylancr 645 . . . . . 6  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( rank `  <. x ,  y >. )  e.  (
rank `  ( A  u.  B ) ) )
3631, 32onsucssi 4780 . . . . . 6  |-  ( (
rank `  <. x ,  y >. )  e.  (
rank `  ( A  u.  B ) )  <->  suc  ( rank `  <. x ,  y
>. )  C_  ( rank `  ( A  u.  B
) ) )
3735, 36sylib 189 . . . . 5  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  ( x  e.  A  /\  y  e.  B ) )  ->  suc  ( rank `  <. x ,  y >. )  C_  ( rank `  ( A  u.  B )
) )
3837ralrimivva 2758 . . . 4  |-  ( Lim  ( rank `  ( A  u.  B )
)  ->  A. x  e.  A  A. y  e.  B  suc  ( rank `  <. x ,  y
>. )  C_  ( rank `  ( A  u.  B
) ) )
39 fveq2 5687 . . . . . . . 8  |-  ( z  =  <. x ,  y
>.  ->  ( rank `  z
)  =  ( rank `  <. x ,  y
>. ) )
40 suceq 4606 . . . . . . . 8  |-  ( (
rank `  z )  =  ( rank `  <. x ,  y >. )  ->  suc  ( rank `  z
)  =  suc  ( rank `  <. x ,  y
>. ) )
4139, 40syl 16 . . . . . . 7  |-  ( z  =  <. x ,  y
>.  ->  suc  ( rank `  z )  =  suc  ( rank `  <. x ,  y >. ) )
4241sseq1d 3335 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  ( suc  ( rank `  z )  C_  ( rank `  ( A  u.  B ) )  <->  suc  ( rank `  <. x ,  y
>. )  C_  ( rank `  ( A  u.  B
) ) ) )
4342ralxp 4975 . . . . 5  |-  ( A. z  e.  ( A  X.  B ) suc  ( rank `  z )  C_  ( rank `  ( A  u.  B ) )  <->  A. x  e.  A  A. y  e.  B  suc  ( rank `  <. x ,  y
>. )  C_  ( rank `  ( A  u.  B
) ) )
4419, 21xpex 4949 . . . . . 6  |-  ( A  X.  B )  e. 
_V
4544rankbnd 7750 . . . . 5  |-  ( A. z  e.  ( A  X.  B ) suc  ( rank `  z )  C_  ( rank `  ( A  u.  B ) )  <->  ( rank `  ( A  X.  B
) )  C_  ( rank `  ( A  u.  B ) ) )
4643, 45bitr3i 243 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  suc  ( rank `  <. x ,  y >. )  C_  ( rank `  ( A  u.  B ) )  <->  ( rank `  ( A  X.  B
) )  C_  ( rank `  ( A  u.  B ) ) )
4738, 46sylib 189 . . 3  |-  ( Lim  ( rank `  ( A  u.  B )
)  ->  ( rank `  ( A  X.  B
) )  C_  ( rank `  ( A  u.  B ) ) )
4847adantr 452 . 2  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  ( A  X.  B )  =/=  (/) )  -> 
( rank `  ( A  X.  B ) )  C_  ( rank `  ( A  u.  B ) ) )
4919, 21rankxpl 7757 . . 3  |-  ( ( A  X.  B )  =/=  (/)  ->  ( rank `  ( A  u.  B
) )  C_  ( rank `  ( A  X.  B ) ) )
5049adantl 453 . 2  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  ( A  X.  B )  =/=  (/) )  -> 
( rank `  ( A  u.  B ) )  C_  ( rank `  ( A  X.  B ) ) )
5148, 50eqssd 3325 1  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  ( A  X.  B )  =/=  (/) )  -> 
( rank `  ( A  X.  B ) )  =  ( rank `  ( A  u.  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   _Vcvv 2916    u. cun 3278    C_ wss 3280   (/)c0 3588   ~Pcpw 3759   {cpr 3775   <.cop 3777   U.cuni 3975   Oncon0 4541   Lim wlim 4542   suc csuc 4543    X. cxp 4835   ` cfv 5413   rankcrnk 7645
This theorem is referenced by:  rankxplim3  7761
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-reg 7516  ax-inf2 7552
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-recs 6592  df-rdg 6627  df-r1 7646  df-rank 7647
  Copyright terms: Public domain W3C validator