MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankwflemb Structured version   Visualization version   Unicode version

Theorem rankwflemb 8282
Description: Two ways of saying a set is well-founded. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
rankwflemb  |-  ( A  e.  U. ( R1
" On )  <->  E. x  e.  On  A  e.  ( R1 `  suc  x
) )
Distinct variable group:    x, A

Proof of Theorem rankwflemb
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eluni 4193 . . 3  |-  ( A  e.  U. ( R1
" On )  <->  E. y
( A  e.  y  /\  y  e.  ( R1 " On ) ) )
2 r1funlim 8255 . . . . . . . 8  |-  ( Fun 
R1  /\  Lim  dom  R1 )
32simpli 465 . . . . . . 7  |-  Fun  R1
4 fvelima 5931 . . . . . . 7  |-  ( ( Fun  R1  /\  y  e.  ( R1 " On ) )  ->  E. x  e.  On  ( R1 `  x )  =  y )
53, 4mpan 684 . . . . . 6  |-  ( y  e.  ( R1 " On )  ->  E. x  e.  On  ( R1 `  x )  =  y )
6 eleq2 2538 . . . . . . . . 9  |-  ( ( R1 `  x )  =  y  ->  ( A  e.  ( R1 `  x )  <->  A  e.  y ) )
76biimprcd 233 . . . . . . . 8  |-  ( A  e.  y  ->  (
( R1 `  x
)  =  y  ->  A  e.  ( R1 `  x ) ) )
8 r1tr 8265 . . . . . . . . . . . 12  |-  Tr  ( R1 `  x )
9 trss 4499 . . . . . . . . . . . 12  |-  ( Tr  ( R1 `  x
)  ->  ( A  e.  ( R1 `  x
)  ->  A  C_  ( R1 `  x ) ) )
108, 9ax-mp 5 . . . . . . . . . . 11  |-  ( A  e.  ( R1 `  x )  ->  A  C_  ( R1 `  x
) )
11 elpwg 3950 . . . . . . . . . . 11  |-  ( A  e.  ( R1 `  x )  ->  ( A  e.  ~P ( R1 `  x )  <->  A  C_  ( R1 `  x ) ) )
1210, 11mpbird 240 . . . . . . . . . 10  |-  ( A  e.  ( R1 `  x )  ->  A  e.  ~P ( R1 `  x ) )
13 elfvdm 5905 . . . . . . . . . . 11  |-  ( A  e.  ( R1 `  x )  ->  x  e.  dom  R1 )
14 r1sucg 8258 . . . . . . . . . . 11  |-  ( x  e.  dom  R1  ->  ( R1 `  suc  x
)  =  ~P ( R1 `  x ) )
1513, 14syl 17 . . . . . . . . . 10  |-  ( A  e.  ( R1 `  x )  ->  ( R1 `  suc  x )  =  ~P ( R1
`  x ) )
1612, 15eleqtrrd 2552 . . . . . . . . 9  |-  ( A  e.  ( R1 `  x )  ->  A  e.  ( R1 `  suc  x ) )
1716a1i 11 . . . . . . . 8  |-  ( x  e.  On  ->  ( A  e.  ( R1 `  x )  ->  A  e.  ( R1 `  suc  x ) ) )
187, 17syl9 72 . . . . . . 7  |-  ( A  e.  y  ->  (
x  e.  On  ->  ( ( R1 `  x
)  =  y  ->  A  e.  ( R1 ` 
suc  x ) ) ) )
1918reximdvai 2856 . . . . . 6  |-  ( A  e.  y  ->  ( E. x  e.  On  ( R1 `  x )  =  y  ->  E. x  e.  On  A  e.  ( R1 `  suc  x
) ) )
205, 19syl5 32 . . . . 5  |-  ( A  e.  y  ->  (
y  e.  ( R1
" On )  ->  E. x  e.  On  A  e.  ( R1 ` 
suc  x ) ) )
2120imp 436 . . . 4  |-  ( ( A  e.  y  /\  y  e.  ( R1 " On ) )  ->  E. x  e.  On  A  e.  ( R1 ` 
suc  x ) )
2221exlimiv 1784 . . 3  |-  ( E. y ( A  e.  y  /\  y  e.  ( R1 " On ) )  ->  E. x  e.  On  A  e.  ( R1 `  suc  x
) )
231, 22sylbi 200 . 2  |-  ( A  e.  U. ( R1
" On )  ->  E. x  e.  On  A  e.  ( R1 ` 
suc  x ) )
24 elfvdm 5905 . . . . . 6  |-  ( A  e.  ( R1 `  suc  x )  ->  suc  x  e.  dom  R1 )
25 fvelrn 6030 . . . . . 6  |-  ( ( Fun  R1  /\  suc  x  e.  dom  R1 )  ->  ( R1 `  suc  x )  e.  ran  R1 )
263, 24, 25sylancr 676 . . . . 5  |-  ( A  e.  ( R1 `  suc  x )  ->  ( R1 `  suc  x )  e.  ran  R1 )
27 df-ima 4852 . . . . . 6  |-  ( R1
" On )  =  ran  ( R1  |`  On )
28 funrel 5606 . . . . . . . . 9  |-  ( Fun 
R1  ->  Rel  R1 )
293, 28ax-mp 5 . . . . . . . 8  |-  Rel  R1
302simpri 469 . . . . . . . . 9  |-  Lim  dom  R1
31 limord 5489 . . . . . . . . 9  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
32 ordsson 6635 . . . . . . . . 9  |-  ( Ord 
dom  R1  ->  dom  R1  C_  On )
3330, 31, 32mp2b 10 . . . . . . . 8  |-  dom  R1  C_  On
34 relssres 5148 . . . . . . . 8  |-  ( ( Rel  R1  /\  dom  R1  C_  On )  ->  ( R1  |`  On )  =  R1 )
3529, 33, 34mp2an 686 . . . . . . 7  |-  ( R1  |`  On )  =  R1
3635rneqi 5067 . . . . . 6  |-  ran  ( R1  |`  On )  =  ran  R1
3727, 36eqtri 2493 . . . . 5  |-  ( R1
" On )  =  ran  R1
3826, 37syl6eleqr 2560 . . . 4  |-  ( A  e.  ( R1 `  suc  x )  ->  ( R1 `  suc  x )  e.  ( R1 " On ) )
39 elunii 4195 . . . 4  |-  ( ( A  e.  ( R1
`  suc  x )  /\  ( R1 `  suc  x )  e.  ( R1 " On ) )  ->  A  e.  U. ( R1 " On ) )
4038, 39mpdan 681 . . 3  |-  ( A  e.  ( R1 `  suc  x )  ->  A  e.  U. ( R1 " On ) )
4140rexlimivw 2869 . 2  |-  ( E. x  e.  On  A  e.  ( R1 `  suc  x )  ->  A  e.  U. ( R1 " On ) )
4223, 41impbii 192 1  |-  ( A  e.  U. ( R1
" On )  <->  E. x  e.  On  A  e.  ( R1 `  suc  x
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452   E.wex 1671    e. wcel 1904   E.wrex 2757    C_ wss 3390   ~Pcpw 3942   U.cuni 4190   Tr wtr 4490   dom cdm 4839   ran crn 4840    |` cres 4841   "cima 4842   Rel wrel 4844   Ord word 5429   Oncon0 5430   Lim wlim 5431   suc csuc 5432   Fun wfun 5583   ` cfv 5589   R1cr1 8251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-r1 8253
This theorem is referenced by:  rankf  8283  r1elwf  8285  rankvalb  8286  rankidb  8289  rankwflem  8304  tcrank  8373  dfac12r  8594
  Copyright terms: Public domain W3C validator