MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankval4 Structured version   Visualization version   Unicode version

Theorem rankval4 8363
Description: The rank of a set is the supremum of the successors of the ranks of its members. Exercise 9.1 of [Jech] p. 72. Also a special case of Theorem 7V(b) of [Enderton] p. 204. (Contributed by NM, 12-Oct-2003.)
Hypothesis
Ref Expression
rankr1b.1  |-  A  e. 
_V
Assertion
Ref Expression
rankval4  |-  ( rank `  A )  =  U_ x  e.  A  suc  ( rank `  x )
Distinct variable group:    x, A

Proof of Theorem rankval4
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfcv 2602 . . . . . 6  |-  F/_ x A
2 nfcv 2602 . . . . . . 7  |-  F/_ x R1
3 nfiu1 4321 . . . . . . 7  |-  F/_ x U_ x  e.  A  suc  ( rank `  x
)
42, 3nffv 5894 . . . . . 6  |-  F/_ x
( R1 `  U_ x  e.  A  suc  ( rank `  x ) )
51, 4dfss2f 3434 . . . . 5  |-  ( A 
C_  ( R1 `  U_ x  e.  A  suc  ( rank `  x )
)  <->  A. x ( x  e.  A  ->  x  e.  ( R1 `  U_ x  e.  A  suc  ( rank `  x ) ) ) )
6 vex 3059 . . . . . . 7  |-  x  e. 
_V
76rankid 8329 . . . . . 6  |-  x  e.  ( R1 `  suc  ( rank `  x )
)
8 ssiun2 4334 . . . . . . . 8  |-  ( x  e.  A  ->  suc  ( rank `  x )  C_ 
U_ x  e.  A  suc  ( rank `  x
) )
9 rankon 8291 . . . . . . . . . 10  |-  ( rank `  x )  e.  On
109onsuci 6691 . . . . . . . . 9  |-  suc  ( rank `  x )  e.  On
11 rankr1b.1 . . . . . . . . . 10  |-  A  e. 
_V
1210rgenw 2760 . . . . . . . . . 10  |-  A. x  e.  A  suc  ( rank `  x )  e.  On
13 iunon 7082 . . . . . . . . . 10  |-  ( ( A  e.  _V  /\  A. x  e.  A  suc  ( rank `  x )  e.  On )  ->  U_ x  e.  A  suc  ( rank `  x )  e.  On )
1411, 12, 13mp2an 683 . . . . . . . . 9  |-  U_ x  e.  A  suc  ( rank `  x )  e.  On
15 r1ord3 8278 . . . . . . . . 9  |-  ( ( suc  ( rank `  x
)  e.  On  /\  U_ x  e.  A  suc  ( rank `  x )  e.  On )  ->  ( suc  ( rank `  x
)  C_  U_ x  e.  A  suc  ( rank `  x )  ->  ( R1 `  suc  ( rank `  x ) )  C_  ( R1 `  U_ x  e.  A  suc  ( rank `  x ) ) ) )
1610, 14, 15mp2an 683 . . . . . . . 8  |-  ( suc  ( rank `  x
)  C_  U_ x  e.  A  suc  ( rank `  x )  ->  ( R1 `  suc  ( rank `  x ) )  C_  ( R1 `  U_ x  e.  A  suc  ( rank `  x ) ) )
178, 16syl 17 . . . . . . 7  |-  ( x  e.  A  ->  ( R1 `  suc  ( rank `  x ) )  C_  ( R1 `  U_ x  e.  A  suc  ( rank `  x ) ) )
1817sseld 3442 . . . . . 6  |-  ( x  e.  A  ->  (
x  e.  ( R1
`  suc  ( rank `  x ) )  ->  x  e.  ( R1 ` 
U_ x  e.  A  suc  ( rank `  x
) ) ) )
197, 18mpi 20 . . . . 5  |-  ( x  e.  A  ->  x  e.  ( R1 `  U_ x  e.  A  suc  ( rank `  x ) ) )
205, 19mpgbir 1683 . . . 4  |-  A  C_  ( R1 `  U_ x  e.  A  suc  ( rank `  x ) )
21 fvex 5897 . . . . 5  |-  ( R1
`  U_ x  e.  A  suc  ( rank `  x
) )  e.  _V
2221rankss 8345 . . . 4  |-  ( A 
C_  ( R1 `  U_ x  e.  A  suc  ( rank `  x )
)  ->  ( rank `  A )  C_  ( rank `  ( R1 `  U_ x  e.  A  suc  ( rank `  x )
) ) )
2320, 22ax-mp 5 . . 3  |-  ( rank `  A )  C_  ( rank `  ( R1 `  U_ x  e.  A  suc  ( rank `  x )
) )
24 r1ord3 8278 . . . . . . 7  |-  ( (
U_ x  e.  A  suc  ( rank `  x
)  e.  On  /\  y  e.  On )  ->  ( U_ x  e.  A  suc  ( rank `  x )  C_  y  ->  ( R1 `  U_ x  e.  A  suc  ( rank `  x ) )  C_  ( R1 `  y ) ) )
2514, 24mpan 681 . . . . . 6  |-  ( y  e.  On  ->  ( U_ x  e.  A  suc  ( rank `  x
)  C_  y  ->  ( R1 `  U_ x  e.  A  suc  ( rank `  x ) )  C_  ( R1 `  y ) ) )
2625ss2rabi 3522 . . . . 5  |-  { y  e.  On  |  U_ x  e.  A  suc  ( rank `  x )  C_  y }  C_  { y  e.  On  |  ( R1 `  U_ x  e.  A  suc  ( rank `  x ) )  C_  ( R1 `  y ) }
27 intss 4268 . . . . 5  |-  ( { y  e.  On  |  U_ x  e.  A  suc  ( rank `  x
)  C_  y }  C_ 
{ y  e.  On  |  ( R1 `  U_ x  e.  A  suc  ( rank `  x )
)  C_  ( R1 `  y ) }  ->  |^|
{ y  e.  On  |  ( R1 `  U_ x  e.  A  suc  ( rank `  x )
)  C_  ( R1 `  y ) }  C_  |^|
{ y  e.  On  |  U_ x  e.  A  suc  ( rank `  x
)  C_  y }
)
2826, 27ax-mp 5 . . . 4  |-  |^| { y  e.  On  |  ( R1 `  U_ x  e.  A  suc  ( rank `  x ) )  C_  ( R1 `  y ) }  C_  |^| { y  e.  On  |  U_ x  e.  A  suc  ( rank `  x )  C_  y }
29 rankval2 8314 . . . . 5  |-  ( ( R1 `  U_ x  e.  A  suc  ( rank `  x ) )  e. 
_V  ->  ( rank `  ( R1 `  U_ x  e.  A  suc  ( rank `  x ) ) )  =  |^| { y  e.  On  |  ( R1 `  U_ x  e.  A  suc  ( rank `  x ) )  C_  ( R1 `  y ) } )
3021, 29ax-mp 5 . . . 4  |-  ( rank `  ( R1 `  U_ x  e.  A  suc  ( rank `  x ) ) )  =  |^| { y  e.  On  |  ( R1 `  U_ x  e.  A  suc  ( rank `  x ) )  C_  ( R1 `  y ) }
31 intmin 4267 . . . . . 6  |-  ( U_ x  e.  A  suc  ( rank `  x )  e.  On  ->  |^| { y  e.  On  |  U_ x  e.  A  suc  ( rank `  x )  C_  y }  =  U_ x  e.  A  suc  ( rank `  x )
)
3214, 31ax-mp 5 . . . . 5  |-  |^| { y  e.  On  |  U_ x  e.  A  suc  ( rank `  x )  C_  y }  =  U_ x  e.  A  suc  ( rank `  x )
3332eqcomi 2470 . . . 4  |-  U_ x  e.  A  suc  ( rank `  x )  =  |^| { y  e.  On  |  U_ x  e.  A  suc  ( rank `  x
)  C_  y }
3428, 30, 333sstr4i 3482 . . 3  |-  ( rank `  ( R1 `  U_ x  e.  A  suc  ( rank `  x ) ) ) 
C_  U_ x  e.  A  suc  ( rank `  x
)
3523, 34sstri 3452 . 2  |-  ( rank `  A )  C_  U_ x  e.  A  suc  ( rank `  x )
36 iunss 4332 . . 3  |-  ( U_ x  e.  A  suc  ( rank `  x )  C_  ( rank `  A
)  <->  A. x  e.  A  suc  ( rank `  x
)  C_  ( rank `  A ) )
3711rankel 8335 . . . 4  |-  ( x  e.  A  ->  ( rank `  x )  e.  ( rank `  A
) )
38 rankon 8291 . . . . 5  |-  ( rank `  A )  e.  On
399, 38onsucssi 6694 . . . 4  |-  ( (
rank `  x )  e.  ( rank `  A
)  <->  suc  ( rank `  x
)  C_  ( rank `  A ) )
4037, 39sylib 201 . . 3  |-  ( x  e.  A  ->  suc  ( rank `  x )  C_  ( rank `  A
) )
4136, 40mprgbir 2763 . 2  |-  U_ x  e.  A  suc  ( rank `  x )  C_  ( rank `  A )
4235, 41eqssi 3459 1  |-  ( rank `  A )  =  U_ x  e.  A  suc  ( rank `  x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1454    e. wcel 1897   A.wral 2748   {crab 2752   _Vcvv 3056    C_ wss 3415   |^|cint 4247   U_ciun 4291   Oncon0 5441   suc csuc 5443   ` cfv 5600   R1cr1 8258   rankcrnk 8259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-rep 4528  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609  ax-reg 8132  ax-inf2 8171
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-ral 2753  df-rex 2754  df-reu 2755  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-pss 3431  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-tp 3984  df-op 3986  df-uni 4212  df-int 4248  df-iun 4293  df-br 4416  df-opab 4475  df-mpt 4476  df-tr 4511  df-eprel 4763  df-id 4767  df-po 4773  df-so 4774  df-fr 4811  df-we 4813  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-pred 5398  df-ord 5444  df-on 5445  df-lim 5446  df-suc 5447  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-om 6719  df-wrecs 7053  df-recs 7115  df-rdg 7153  df-r1 8260  df-rank 8261
This theorem is referenced by:  rankbnd  8364  rankc1  8366
  Copyright terms: Public domain W3C validator