MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankval3b Structured version   Visualization version   Unicode version

Theorem rankval3b 8315
Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankval3b  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  A )  =  |^| { x  e.  On  |  A. y  e.  A  ( rank `  y )  e.  x } )
Distinct variable group:    x, y, A

Proof of Theorem rankval3b
StepHypRef Expression
1 rankon 8284 . . . . . . . . . 10  |-  ( rank `  A )  e.  On
2 simprl 772 . . . . . . . . . 10  |-  ( ( A  e.  U. ( R1 " On )  /\  ( x  e.  On  /\ 
A. y  e.  A  ( rank `  y )  e.  x ) )  ->  x  e.  On )
3 ontri1 5464 . . . . . . . . . 10  |-  ( ( ( rank `  A
)  e.  On  /\  x  e.  On )  ->  ( ( rank `  A
)  C_  x  <->  -.  x  e.  ( rank `  A
) ) )
41, 2, 3sylancr 676 . . . . . . . . 9  |-  ( ( A  e.  U. ( R1 " On )  /\  ( x  e.  On  /\ 
A. y  e.  A  ( rank `  y )  e.  x ) )  -> 
( ( rank `  A
)  C_  x  <->  -.  x  e.  ( rank `  A
) ) )
54con2bid 336 . . . . . . . 8  |-  ( ( A  e.  U. ( R1 " On )  /\  ( x  e.  On  /\ 
A. y  e.  A  ( rank `  y )  e.  x ) )  -> 
( x  e.  (
rank `  A )  <->  -.  ( rank `  A
)  C_  x )
)
6 r1elssi 8294 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  U. ( R1
" On )  ->  A  C_  U. ( R1
" On ) )
76adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  U. ( R1 " On )  /\  x  e.  ( rank `  A ) )  ->  A  C_  U. ( R1
" On ) )
87sselda 3418 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  U. ( R1 " On )  /\  x  e.  (
rank `  A )
)  /\  y  e.  A )  ->  y  e.  U. ( R1 " On ) )
9 rankdmr1 8290 . . . . . . . . . . . . . . . . . 18  |-  ( rank `  A )  e.  dom  R1
10 r1funlim 8255 . . . . . . . . . . . . . . . . . . . 20  |-  ( Fun 
R1  /\  Lim  dom  R1 )
1110simpri 469 . . . . . . . . . . . . . . . . . . 19  |-  Lim  dom  R1
12 limord 5489 . . . . . . . . . . . . . . . . . . 19  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
13 ordtr1 5473 . . . . . . . . . . . . . . . . . . 19  |-  ( Ord 
dom  R1  ->  ( ( x  e.  ( rank `  A )  /\  ( rank `  A )  e. 
dom  R1 )  ->  x  e.  dom  R1 ) )
1411, 12, 13mp2b 10 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( rank `  A )  /\  ( rank `  A )  e. 
dom  R1 )  ->  x  e.  dom  R1 )
159, 14mpan2 685 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( rank `  A
)  ->  x  e.  dom  R1 )
1615ad2antlr 741 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  U. ( R1 " On )  /\  x  e.  (
rank `  A )
)  /\  y  e.  A )  ->  x  e.  dom  R1 )
17 rankr1ag 8291 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  U. ( R1 " On )  /\  x  e.  dom  R1 )  ->  ( y  e.  ( R1 `  x
)  <->  ( rank `  y
)  e.  x ) )
188, 16, 17syl2anc 673 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  U. ( R1 " On )  /\  x  e.  (
rank `  A )
)  /\  y  e.  A )  ->  (
y  e.  ( R1
`  x )  <->  ( rank `  y )  e.  x
) )
1918ralbidva 2828 . . . . . . . . . . . . . 14  |-  ( ( A  e.  U. ( R1 " On )  /\  x  e.  ( rank `  A ) )  -> 
( A. y  e.  A  y  e.  ( R1 `  x )  <->  A. y  e.  A  ( rank `  y )  e.  x ) )
2019biimpar 493 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  U. ( R1 " On )  /\  x  e.  (
rank `  A )
)  /\  A. y  e.  A  ( rank `  y )  e.  x
)  ->  A. y  e.  A  y  e.  ( R1 `  x ) )
2120an32s 821 . . . . . . . . . . . 12  |-  ( ( ( A  e.  U. ( R1 " On )  /\  A. y  e.  A  ( rank `  y
)  e.  x )  /\  x  e.  (
rank `  A )
)  ->  A. y  e.  A  y  e.  ( R1 `  x ) )
22 dfss3 3408 . . . . . . . . . . . 12  |-  ( A 
C_  ( R1 `  x )  <->  A. y  e.  A  y  e.  ( R1 `  x ) )
2321, 22sylibr 217 . . . . . . . . . . 11  |-  ( ( ( A  e.  U. ( R1 " On )  /\  A. y  e.  A  ( rank `  y
)  e.  x )  /\  x  e.  (
rank `  A )
)  ->  A  C_  ( R1 `  x ) )
24 simpll 768 . . . . . . . . . . . 12  |-  ( ( ( A  e.  U. ( R1 " On )  /\  A. y  e.  A  ( rank `  y
)  e.  x )  /\  x  e.  (
rank `  A )
)  ->  A  e.  U. ( R1 " On ) )
2515adantl 473 . . . . . . . . . . . 12  |-  ( ( ( A  e.  U. ( R1 " On )  /\  A. y  e.  A  ( rank `  y
)  e.  x )  /\  x  e.  (
rank `  A )
)  ->  x  e.  dom  R1 )
26 rankr1bg 8292 . . . . . . . . . . . 12  |-  ( ( A  e.  U. ( R1 " On )  /\  x  e.  dom  R1 )  ->  ( A  C_  ( R1 `  x )  <-> 
( rank `  A )  C_  x ) )
2724, 25, 26syl2anc 673 . . . . . . . . . . 11  |-  ( ( ( A  e.  U. ( R1 " On )  /\  A. y  e.  A  ( rank `  y
)  e.  x )  /\  x  e.  (
rank `  A )
)  ->  ( A  C_  ( R1 `  x
)  <->  ( rank `  A
)  C_  x )
)
2823, 27mpbid 215 . . . . . . . . . 10  |-  ( ( ( A  e.  U. ( R1 " On )  /\  A. y  e.  A  ( rank `  y
)  e.  x )  /\  x  e.  (
rank `  A )
)  ->  ( rank `  A )  C_  x
)
2928ex 441 . . . . . . . . 9  |-  ( ( A  e.  U. ( R1 " On )  /\  A. y  e.  A  (
rank `  y )  e.  x )  ->  (
x  e.  ( rank `  A )  ->  ( rank `  A )  C_  x ) )
3029adantrl 730 . . . . . . . 8  |-  ( ( A  e.  U. ( R1 " On )  /\  ( x  e.  On  /\ 
A. y  e.  A  ( rank `  y )  e.  x ) )  -> 
( x  e.  (
rank `  A )  ->  ( rank `  A
)  C_  x )
)
315, 30sylbird 243 . . . . . . 7  |-  ( ( A  e.  U. ( R1 " On )  /\  ( x  e.  On  /\ 
A. y  e.  A  ( rank `  y )  e.  x ) )  -> 
( -.  ( rank `  A )  C_  x  ->  ( rank `  A
)  C_  x )
)
3231pm2.18d 115 . . . . . 6  |-  ( ( A  e.  U. ( R1 " On )  /\  ( x  e.  On  /\ 
A. y  e.  A  ( rank `  y )  e.  x ) )  -> 
( rank `  A )  C_  x )
3332ex 441 . . . . 5  |-  ( A  e.  U. ( R1
" On )  -> 
( ( x  e.  On  /\  A. y  e.  A  ( rank `  y )  e.  x
)  ->  ( rank `  A )  C_  x
) )
3433alrimiv 1781 . . . 4  |-  ( A  e.  U. ( R1
" On )  ->  A. x ( ( x  e.  On  /\  A. y  e.  A  ( rank `  y )  e.  x )  ->  ( rank `  A )  C_  x ) )
35 ssintab 4243 . . . 4  |-  ( (
rank `  A )  C_ 
|^| { x  |  ( x  e.  On  /\  A. y  e.  A  (
rank `  y )  e.  x ) }  <->  A. x
( ( x  e.  On  /\  A. y  e.  A  ( rank `  y )  e.  x
)  ->  ( rank `  A )  C_  x
) )
3634, 35sylibr 217 . . 3  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  A )  C_ 
|^| { x  |  ( x  e.  On  /\  A. y  e.  A  (
rank `  y )  e.  x ) } )
37 df-rab 2765 . . . 4  |-  { x  e.  On  |  A. y  e.  A  ( rank `  y )  e.  x }  =  { x  |  ( x  e.  On  /\  A. y  e.  A  ( rank `  y )  e.  x
) }
3837inteqi 4230 . . 3  |-  |^| { x  e.  On  |  A. y  e.  A  ( rank `  y )  e.  x }  =  |^| { x  |  ( x  e.  On  /\  A. y  e.  A  ( rank `  y )  e.  x
) }
3936, 38syl6sseqr 3465 . 2  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  A )  C_ 
|^| { x  e.  On  |  A. y  e.  A  ( rank `  y )  e.  x } )
40 rankelb 8313 . . . 4  |-  ( A  e.  U. ( R1
" On )  -> 
( y  e.  A  ->  ( rank `  y
)  e.  ( rank `  A ) ) )
4140ralrimiv 2808 . . 3  |-  ( A  e.  U. ( R1
" On )  ->  A. y  e.  A  ( rank `  y )  e.  ( rank `  A
) )
42 eleq2 2538 . . . . 5  |-  ( x  =  ( rank `  A
)  ->  ( ( rank `  y )  e.  x  <->  ( rank `  y
)  e.  ( rank `  A ) ) )
4342ralbidv 2829 . . . 4  |-  ( x  =  ( rank `  A
)  ->  ( A. y  e.  A  ( rank `  y )  e.  x  <->  A. y  e.  A  ( rank `  y )  e.  ( rank `  A
) ) )
4443onintss 5480 . . 3  |-  ( (
rank `  A )  e.  On  ->  ( A. y  e.  A  ( rank `  y )  e.  ( rank `  A
)  ->  |^| { x  e.  On  |  A. y  e.  A  ( rank `  y )  e.  x }  C_  ( rank `  A
) ) )
451, 41, 44mpsyl 64 . 2  |-  ( A  e.  U. ( R1
" On )  ->  |^| { x  e.  On  |  A. y  e.  A  ( rank `  y )  e.  x }  C_  ( rank `  A ) )
4639, 45eqssd 3435 1  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  A )  =  |^| { x  e.  On  |  A. y  e.  A  ( rank `  y )  e.  x } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376   A.wal 1450    = wceq 1452    e. wcel 1904   {cab 2457   A.wral 2756   {crab 2760    C_ wss 3390   U.cuni 4190   |^|cint 4226   dom cdm 4839   "cima 4842   Ord word 5429   Oncon0 5430   Lim wlim 5431   Fun wfun 5583   ` cfv 5589   R1cr1 8251   rankcrnk 8252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-r1 8253  df-rank 8254
This theorem is referenced by:  ranksnb  8316  rankonidlem  8317  rankval3  8329  rankunb  8339  rankuni2b  8342  tcrank  8373
  Copyright terms: Public domain W3C validator