MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankval3b Structured version   Unicode version

Theorem rankval3b 8244
Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankval3b  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  A )  =  |^| { x  e.  On  |  A. y  e.  A  ( rank `  y )  e.  x } )
Distinct variable group:    x, y, A

Proof of Theorem rankval3b
StepHypRef Expression
1 rankon 8213 . . . . . . . . . 10  |-  ( rank `  A )  e.  On
2 simprl 755 . . . . . . . . . 10  |-  ( ( A  e.  U. ( R1 " On )  /\  ( x  e.  On  /\ 
A. y  e.  A  ( rank `  y )  e.  x ) )  ->  x  e.  On )
3 ontri1 4899 . . . . . . . . . 10  |-  ( ( ( rank `  A
)  e.  On  /\  x  e.  On )  ->  ( ( rank `  A
)  C_  x  <->  -.  x  e.  ( rank `  A
) ) )
41, 2, 3sylancr 663 . . . . . . . . 9  |-  ( ( A  e.  U. ( R1 " On )  /\  ( x  e.  On  /\ 
A. y  e.  A  ( rank `  y )  e.  x ) )  -> 
( ( rank `  A
)  C_  x  <->  -.  x  e.  ( rank `  A
) ) )
54con2bid 329 . . . . . . . 8  |-  ( ( A  e.  U. ( R1 " On )  /\  ( x  e.  On  /\ 
A. y  e.  A  ( rank `  y )  e.  x ) )  -> 
( x  e.  (
rank `  A )  <->  -.  ( rank `  A
)  C_  x )
)
6 r1elssi 8223 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  U. ( R1
" On )  ->  A  C_  U. ( R1
" On ) )
76adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  U. ( R1 " On )  /\  x  e.  ( rank `  A ) )  ->  A  C_  U. ( R1
" On ) )
87sselda 3487 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  U. ( R1 " On )  /\  x  e.  (
rank `  A )
)  /\  y  e.  A )  ->  y  e.  U. ( R1 " On ) )
9 rankdmr1 8219 . . . . . . . . . . . . . . . . . 18  |-  ( rank `  A )  e.  dom  R1
10 r1funlim 8184 . . . . . . . . . . . . . . . . . . . 20  |-  ( Fun 
R1  /\  Lim  dom  R1 )
1110simpri 462 . . . . . . . . . . . . . . . . . . 19  |-  Lim  dom  R1
12 limord 4924 . . . . . . . . . . . . . . . . . . 19  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
13 ordtr1 4908 . . . . . . . . . . . . . . . . . . 19  |-  ( Ord 
dom  R1  ->  ( ( x  e.  ( rank `  A )  /\  ( rank `  A )  e. 
dom  R1 )  ->  x  e.  dom  R1 ) )
1411, 12, 13mp2b 10 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( rank `  A )  /\  ( rank `  A )  e. 
dom  R1 )  ->  x  e.  dom  R1 )
159, 14mpan2 671 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( rank `  A
)  ->  x  e.  dom  R1 )
1615ad2antlr 726 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  U. ( R1 " On )  /\  x  e.  (
rank `  A )
)  /\  y  e.  A )  ->  x  e.  dom  R1 )
17 rankr1ag 8220 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  U. ( R1 " On )  /\  x  e.  dom  R1 )  ->  ( y  e.  ( R1 `  x
)  <->  ( rank `  y
)  e.  x ) )
188, 16, 17syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  U. ( R1 " On )  /\  x  e.  (
rank `  A )
)  /\  y  e.  A )  ->  (
y  e.  ( R1
`  x )  <->  ( rank `  y )  e.  x
) )
1918ralbidva 2877 . . . . . . . . . . . . . 14  |-  ( ( A  e.  U. ( R1 " On )  /\  x  e.  ( rank `  A ) )  -> 
( A. y  e.  A  y  e.  ( R1 `  x )  <->  A. y  e.  A  ( rank `  y )  e.  x ) )
2019biimpar 485 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  U. ( R1 " On )  /\  x  e.  (
rank `  A )
)  /\  A. y  e.  A  ( rank `  y )  e.  x
)  ->  A. y  e.  A  y  e.  ( R1 `  x ) )
2120an32s 802 . . . . . . . . . . . 12  |-  ( ( ( A  e.  U. ( R1 " On )  /\  A. y  e.  A  ( rank `  y
)  e.  x )  /\  x  e.  (
rank `  A )
)  ->  A. y  e.  A  y  e.  ( R1 `  x ) )
22 dfss3 3477 . . . . . . . . . . . 12  |-  ( A 
C_  ( R1 `  x )  <->  A. y  e.  A  y  e.  ( R1 `  x ) )
2321, 22sylibr 212 . . . . . . . . . . 11  |-  ( ( ( A  e.  U. ( R1 " On )  /\  A. y  e.  A  ( rank `  y
)  e.  x )  /\  x  e.  (
rank `  A )
)  ->  A  C_  ( R1 `  x ) )
24 simpll 753 . . . . . . . . . . . 12  |-  ( ( ( A  e.  U. ( R1 " On )  /\  A. y  e.  A  ( rank `  y
)  e.  x )  /\  x  e.  (
rank `  A )
)  ->  A  e.  U. ( R1 " On ) )
2515adantl 466 . . . . . . . . . . . 12  |-  ( ( ( A  e.  U. ( R1 " On )  /\  A. y  e.  A  ( rank `  y
)  e.  x )  /\  x  e.  (
rank `  A )
)  ->  x  e.  dom  R1 )
26 rankr1bg 8221 . . . . . . . . . . . 12  |-  ( ( A  e.  U. ( R1 " On )  /\  x  e.  dom  R1 )  ->  ( A  C_  ( R1 `  x )  <-> 
( rank `  A )  C_  x ) )
2724, 25, 26syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( A  e.  U. ( R1 " On )  /\  A. y  e.  A  ( rank `  y
)  e.  x )  /\  x  e.  (
rank `  A )
)  ->  ( A  C_  ( R1 `  x
)  <->  ( rank `  A
)  C_  x )
)
2823, 27mpbid 210 . . . . . . . . . 10  |-  ( ( ( A  e.  U. ( R1 " On )  /\  A. y  e.  A  ( rank `  y
)  e.  x )  /\  x  e.  (
rank `  A )
)  ->  ( rank `  A )  C_  x
)
2928ex 434 . . . . . . . . 9  |-  ( ( A  e.  U. ( R1 " On )  /\  A. y  e.  A  (
rank `  y )  e.  x )  ->  (
x  e.  ( rank `  A )  ->  ( rank `  A )  C_  x ) )
3029adantrl 715 . . . . . . . 8  |-  ( ( A  e.  U. ( R1 " On )  /\  ( x  e.  On  /\ 
A. y  e.  A  ( rank `  y )  e.  x ) )  -> 
( x  e.  (
rank `  A )  ->  ( rank `  A
)  C_  x )
)
315, 30sylbird 235 . . . . . . 7  |-  ( ( A  e.  U. ( R1 " On )  /\  ( x  e.  On  /\ 
A. y  e.  A  ( rank `  y )  e.  x ) )  -> 
( -.  ( rank `  A )  C_  x  ->  ( rank `  A
)  C_  x )
)
3231pm2.18d 111 . . . . . 6  |-  ( ( A  e.  U. ( R1 " On )  /\  ( x  e.  On  /\ 
A. y  e.  A  ( rank `  y )  e.  x ) )  -> 
( rank `  A )  C_  x )
3332ex 434 . . . . 5  |-  ( A  e.  U. ( R1
" On )  -> 
( ( x  e.  On  /\  A. y  e.  A  ( rank `  y )  e.  x
)  ->  ( rank `  A )  C_  x
) )
3433alrimiv 1704 . . . 4  |-  ( A  e.  U. ( R1
" On )  ->  A. x ( ( x  e.  On  /\  A. y  e.  A  ( rank `  y )  e.  x )  ->  ( rank `  A )  C_  x ) )
35 ssintab 4285 . . . 4  |-  ( (
rank `  A )  C_ 
|^| { x  |  ( x  e.  On  /\  A. y  e.  A  (
rank `  y )  e.  x ) }  <->  A. x
( ( x  e.  On  /\  A. y  e.  A  ( rank `  y )  e.  x
)  ->  ( rank `  A )  C_  x
) )
3634, 35sylibr 212 . . 3  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  A )  C_ 
|^| { x  |  ( x  e.  On  /\  A. y  e.  A  (
rank `  y )  e.  x ) } )
37 df-rab 2800 . . . 4  |-  { x  e.  On  |  A. y  e.  A  ( rank `  y )  e.  x }  =  { x  |  ( x  e.  On  /\  A. y  e.  A  ( rank `  y )  e.  x
) }
3837inteqi 4272 . . 3  |-  |^| { x  e.  On  |  A. y  e.  A  ( rank `  y )  e.  x }  =  |^| { x  |  ( x  e.  On  /\  A. y  e.  A  ( rank `  y )  e.  x
) }
3936, 38syl6sseqr 3534 . 2  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  A )  C_ 
|^| { x  e.  On  |  A. y  e.  A  ( rank `  y )  e.  x } )
40 rankelb 8242 . . . 4  |-  ( A  e.  U. ( R1
" On )  -> 
( y  e.  A  ->  ( rank `  y
)  e.  ( rank `  A ) ) )
4140ralrimiv 2853 . . 3  |-  ( A  e.  U. ( R1
" On )  ->  A. y  e.  A  ( rank `  y )  e.  ( rank `  A
) )
42 eleq2 2514 . . . . 5  |-  ( x  =  ( rank `  A
)  ->  ( ( rank `  y )  e.  x  <->  ( rank `  y
)  e.  ( rank `  A ) ) )
4342ralbidv 2880 . . . 4  |-  ( x  =  ( rank `  A
)  ->  ( A. y  e.  A  ( rank `  y )  e.  x  <->  A. y  e.  A  ( rank `  y )  e.  ( rank `  A
) ) )
4443onintss 4915 . . 3  |-  ( (
rank `  A )  e.  On  ->  ( A. y  e.  A  ( rank `  y )  e.  ( rank `  A
)  ->  |^| { x  e.  On  |  A. y  e.  A  ( rank `  y )  e.  x }  C_  ( rank `  A
) ) )
451, 41, 44mpsyl 63 . 2  |-  ( A  e.  U. ( R1
" On )  ->  |^| { x  e.  On  |  A. y  e.  A  ( rank `  y )  e.  x }  C_  ( rank `  A ) )
4639, 45eqssd 3504 1  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  A )  =  |^| { x  e.  On  |  A. y  e.  A  ( rank `  y )  e.  x } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1379    = wceq 1381    e. wcel 1802   {cab 2426   A.wral 2791   {crab 2795    C_ wss 3459   U.cuni 4231   |^|cint 4268   Ord word 4864   Oncon0 4865   Lim wlim 4866   dom cdm 4986   "cima 4989   Fun wfun 5569   ` cfv 5575   R1cr1 8180   rankcrnk 8181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4555  ax-nul 4563  ax-pow 4612  ax-pr 4673  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3419  df-dif 3462  df-un 3464  df-in 3466  df-ss 3473  df-pss 3475  df-nul 3769  df-if 3924  df-pw 3996  df-sn 4012  df-pr 4014  df-tp 4016  df-op 4018  df-uni 4232  df-int 4269  df-iun 4314  df-br 4435  df-opab 4493  df-mpt 4494  df-tr 4528  df-eprel 4778  df-id 4782  df-po 4787  df-so 4788  df-fr 4825  df-we 4827  df-ord 4868  df-on 4869  df-lim 4870  df-suc 4871  df-xp 4992  df-rel 4993  df-cnv 4994  df-co 4995  df-dm 4996  df-rn 4997  df-res 4998  df-ima 4999  df-iota 5538  df-fun 5577  df-fn 5578  df-f 5579  df-f1 5580  df-fo 5581  df-f1o 5582  df-fv 5583  df-om 6683  df-recs 7041  df-rdg 7075  df-r1 8182  df-rank 8183
This theorem is referenced by:  ranksnb  8245  rankonidlem  8246  rankval3  8258  rankunb  8268  rankuni2b  8271  tcrank  8302
  Copyright terms: Public domain W3C validator