MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankuni2b Structured version   Visualization version   Unicode version

Theorem rankuni2b 8321
Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
rankuni2b  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  U. A )  =  U_ x  e.  A  ( rank `  x
) )
Distinct variable group:    x, A

Proof of Theorem rankuni2b
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniwf 8287 . . . 4  |-  ( A  e.  U. ( R1
" On )  <->  U. A  e. 
U. ( R1 " On ) )
2 rankval3b 8294 . . . 4  |-  ( U. A  e.  U. ( R1 " On )  -> 
( rank `  U. A )  =  |^| { z  e.  On  |  A. y  e.  U. A (
rank `  y )  e.  z } )
31, 2sylbi 199 . . 3  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  U. A )  =  |^| { z  e.  On  |  A. y  e.  U. A (
rank `  y )  e.  z } )
4 iuneq1 4291 . . . . . . 7  |-  ( y  =  A  ->  U_ x  e.  y  ( rank `  x )  =  U_ x  e.  A  ( rank `  x ) )
54eleq1d 2512 . . . . . 6  |-  ( y  =  A  ->  ( U_ x  e.  y 
( rank `  x )  e.  On  <->  U_ x  e.  A  ( rank `  x )  e.  On ) )
6 vex 3047 . . . . . . 7  |-  y  e. 
_V
7 rankon 8263 . . . . . . . 8  |-  ( rank `  x )  e.  On
87rgenw 2748 . . . . . . 7  |-  A. x  e.  y  ( rank `  x )  e.  On
9 iunon 7054 . . . . . . 7  |-  ( ( y  e.  _V  /\  A. x  e.  y  (
rank `  x )  e.  On )  ->  U_ x  e.  y  ( rank `  x )  e.  On )
106, 8, 9mp2an 677 . . . . . 6  |-  U_ x  e.  y  ( rank `  x )  e.  On
115, 10vtoclg 3106 . . . . 5  |-  ( A  e.  U. ( R1
" On )  ->  U_ x  e.  A  ( rank `  x )  e.  On )
12 eluni2 4201 . . . . . . 7  |-  ( y  e.  U. A  <->  E. x  e.  A  y  e.  x )
13 nfv 1760 . . . . . . . 8  |-  F/ x  A  e.  U. ( R1 " On )
14 nfiu1 4307 . . . . . . . . 9  |-  F/_ x U_ x  e.  A  ( rank `  x )
1514nfel2 2607 . . . . . . . 8  |-  F/ x
( rank `  y )  e.  U_ x  e.  A  ( rank `  x )
16 r1elssi 8273 . . . . . . . . . . 11  |-  ( A  e.  U. ( R1
" On )  ->  A  C_  U. ( R1
" On ) )
1716sseld 3430 . . . . . . . . . 10  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  x  e.  U. ( R1 " On ) ) )
18 rankelb 8292 . . . . . . . . . 10  |-  ( x  e.  U. ( R1
" On )  -> 
( y  e.  x  ->  ( rank `  y
)  e.  ( rank `  x ) ) )
1917, 18syl6 34 . . . . . . . . 9  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  ( y  e.  x  ->  ( rank `  y
)  e.  ( rank `  x ) ) ) )
20 ssiun2 4320 . . . . . . . . . . 11  |-  ( x  e.  A  ->  ( rank `  x )  C_  U_ x  e.  A  (
rank `  x )
)
2120sseld 3430 . . . . . . . . . 10  |-  ( x  e.  A  ->  (
( rank `  y )  e.  ( rank `  x
)  ->  ( rank `  y )  e.  U_ x  e.  A  ( rank `  x ) ) )
2221a1i 11 . . . . . . . . 9  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  ( ( rank `  y
)  e.  ( rank `  x )  ->  ( rank `  y )  e. 
U_ x  e.  A  ( rank `  x )
) ) )
2319, 22syldd 68 . . . . . . . 8  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  ( y  e.  x  ->  ( rank `  y
)  e.  U_ x  e.  A  ( rank `  x ) ) ) )
2413, 15, 23rexlimd 2870 . . . . . . 7  |-  ( A  e.  U. ( R1
" On )  -> 
( E. x  e.  A  y  e.  x  ->  ( rank `  y
)  e.  U_ x  e.  A  ( rank `  x ) ) )
2512, 24syl5bi 221 . . . . . 6  |-  ( A  e.  U. ( R1
" On )  -> 
( y  e.  U. A  ->  ( rank `  y
)  e.  U_ x  e.  A  ( rank `  x ) ) )
2625ralrimiv 2799 . . . . 5  |-  ( A  e.  U. ( R1
" On )  ->  A. y  e.  U. A
( rank `  y )  e.  U_ x  e.  A  ( rank `  x )
)
27 eleq2 2517 . . . . . . 7  |-  ( z  =  U_ x  e.  A  ( rank `  x
)  ->  ( ( rank `  y )  e.  z  <->  ( rank `  y
)  e.  U_ x  e.  A  ( rank `  x ) ) )
2827ralbidv 2826 . . . . . 6  |-  ( z  =  U_ x  e.  A  ( rank `  x
)  ->  ( A. y  e.  U. A (
rank `  y )  e.  z  <->  A. y  e.  U. A ( rank `  y
)  e.  U_ x  e.  A  ( rank `  x ) ) )
2928elrab 3195 . . . . 5  |-  ( U_ x  e.  A  ( rank `  x )  e. 
{ z  e.  On  |  A. y  e.  U. A ( rank `  y
)  e.  z }  <-> 
( U_ x  e.  A  ( rank `  x )  e.  On  /\  A. y  e.  U. A ( rank `  y )  e.  U_ x  e.  A  ( rank `  x ) ) )
3011, 26, 29sylanbrc 669 . . . 4  |-  ( A  e.  U. ( R1
" On )  ->  U_ x  e.  A  ( rank `  x )  e.  { z  e.  On  |  A. y  e.  U. A ( rank `  y
)  e.  z } )
31 intss1 4248 . . . 4  |-  ( U_ x  e.  A  ( rank `  x )  e. 
{ z  e.  On  |  A. y  e.  U. A ( rank `  y
)  e.  z }  ->  |^| { z  e.  On  |  A. y  e.  U. A ( rank `  y )  e.  z }  C_  U_ x  e.  A  ( rank `  x
) )
3230, 31syl 17 . . 3  |-  ( A  e.  U. ( R1
" On )  ->  |^| { z  e.  On  |  A. y  e.  U. A ( rank `  y
)  e.  z } 
C_  U_ x  e.  A  ( rank `  x )
)
333, 32eqsstrd 3465 . 2  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  U. A ) 
C_  U_ x  e.  A  ( rank `  x )
)
341biimpi 198 . . . . 5  |-  ( A  e.  U. ( R1
" On )  ->  U. A  e.  U. ( R1 " On ) )
35 elssuni 4226 . . . . 5  |-  ( x  e.  A  ->  x  C_ 
U. A )
36 rankssb 8316 . . . . 5  |-  ( U. A  e.  U. ( R1 " On )  -> 
( x  C_  U. A  ->  ( rank `  x
)  C_  ( rank ` 
U. A ) ) )
3734, 35, 36syl2im 39 . . . 4  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  ( rank `  x
)  C_  ( rank ` 
U. A ) ) )
3837ralrimiv 2799 . . 3  |-  ( A  e.  U. ( R1
" On )  ->  A. x  e.  A  ( rank `  x )  C_  ( rank `  U. A ) )
39 iunss 4318 . . 3  |-  ( U_ x  e.  A  ( rank `  x )  C_  ( rank `  U. A )  <->  A. x  e.  A  ( rank `  x )  C_  ( rank `  U. A ) )
4038, 39sylibr 216 . 2  |-  ( A  e.  U. ( R1
" On )  ->  U_ x  e.  A  ( rank `  x )  C_  ( rank `  U. A ) )
4133, 40eqssd 3448 1  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  U. A )  =  U_ x  e.  A  ( rank `  x
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1443    e. wcel 1886   A.wral 2736   E.wrex 2737   {crab 2740   _Vcvv 3044    C_ wss 3403   U.cuni 4197   |^|cint 4233   U_ciun 4277   "cima 4836   Oncon0 5422   ` cfv 5581   R1cr1 8230   rankcrnk 8231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-om 6690  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-r1 8232  df-rank 8233
This theorem is referenced by:  rankuni2  8323  rankcf  9199
  Copyright terms: Public domain W3C validator