MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankuni Structured version   Unicode version

Theorem rankuni 8298
Description: The rank of a union. Part of Exercise 4 of [Kunen] p. 107. (Contributed by NM, 15-Sep-2006.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankuni  |-  ( rank `  U. A )  = 
U. ( rank `  A
)

Proof of Theorem rankuni
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4259 . . . . 5  |-  ( x  =  A  ->  U. x  =  U. A )
21fveq2d 5876 . . . 4  |-  ( x  =  A  ->  ( rank `  U. x )  =  ( rank `  U. A ) )
3 fveq2 5872 . . . . 5  |-  ( x  =  A  ->  ( rank `  x )  =  ( rank `  A
) )
43unieqd 4261 . . . 4  |-  ( x  =  A  ->  U. ( rank `  x )  = 
U. ( rank `  A
) )
52, 4eqeq12d 2479 . . 3  |-  ( x  =  A  ->  (
( rank `  U. x )  =  U. ( rank `  x )  <->  ( rank ` 
U. A )  = 
U. ( rank `  A
) ) )
6 vex 3112 . . . . . . 7  |-  x  e. 
_V
76rankuni2 8290 . . . . . 6  |-  ( rank `  U. x )  = 
U_ z  e.  x  ( rank `  z )
8 fvex 5882 . . . . . . 7  |-  ( rank `  z )  e.  _V
98dfiun2 4366 . . . . . 6  |-  U_ z  e.  x  ( rank `  z )  =  U. { y  |  E. z  e.  x  y  =  ( rank `  z
) }
107, 9eqtri 2486 . . . . 5  |-  ( rank `  U. x )  = 
U. { y  |  E. z  e.  x  y  =  ( rank `  z ) }
11 df-rex 2813 . . . . . . . 8  |-  ( E. z  e.  x  y  =  ( rank `  z
)  <->  E. z ( z  e.  x  /\  y  =  ( rank `  z
) ) )
126rankel 8274 . . . . . . . . . . 11  |-  ( z  e.  x  ->  ( rank `  z )  e.  ( rank `  x
) )
1312anim1i 568 . . . . . . . . . 10  |-  ( ( z  e.  x  /\  y  =  ( rank `  z ) )  -> 
( ( rank `  z
)  e.  ( rank `  x )  /\  y  =  ( rank `  z
) ) )
1413eximi 1657 . . . . . . . . 9  |-  ( E. z ( z  e.  x  /\  y  =  ( rank `  z
) )  ->  E. z
( ( rank `  z
)  e.  ( rank `  x )  /\  y  =  ( rank `  z
) ) )
15 19.42v 1776 . . . . . . . . . 10  |-  ( E. z ( y  e.  ( rank `  x
)  /\  y  =  ( rank `  z )
)  <->  ( y  e.  ( rank `  x
)  /\  E. z 
y  =  ( rank `  z ) ) )
16 eleq1 2529 . . . . . . . . . . . 12  |-  ( y  =  ( rank `  z
)  ->  ( y  e.  ( rank `  x
)  <->  ( rank `  z
)  e.  ( rank `  x ) ) )
1716pm5.32ri 638 . . . . . . . . . . 11  |-  ( ( y  e.  ( rank `  x )  /\  y  =  ( rank `  z
) )  <->  ( ( rank `  z )  e.  ( rank `  x
)  /\  y  =  ( rank `  z )
) )
1817exbii 1668 . . . . . . . . . 10  |-  ( E. z ( y  e.  ( rank `  x
)  /\  y  =  ( rank `  z )
)  <->  E. z ( (
rank `  z )  e.  ( rank `  x
)  /\  y  =  ( rank `  z )
) )
19 simpl 457 . . . . . . . . . . 11  |-  ( ( y  e.  ( rank `  x )  /\  E. z  y  =  ( rank `  z ) )  ->  y  e.  (
rank `  x )
)
20 rankon 8230 . . . . . . . . . . . . . . . . 17  |-  ( rank `  x )  e.  On
2120oneli 4994 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( rank `  x
)  ->  y  e.  On )
22 r1fnon 8202 . . . . . . . . . . . . . . . . 17  |-  R1  Fn  On
23 fndm 5686 . . . . . . . . . . . . . . . . 17  |-  ( R1  Fn  On  ->  dom  R1  =  On )
2422, 23ax-mp 5 . . . . . . . . . . . . . . . 16  |-  dom  R1  =  On
2521, 24syl6eleqr 2556 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( rank `  x
)  ->  y  e.  dom  R1 )
26 rankr1id 8297 . . . . . . . . . . . . . . 15  |-  ( y  e.  dom  R1  <->  ( rank `  ( R1 `  y
) )  =  y )
2725, 26sylib 196 . . . . . . . . . . . . . 14  |-  ( y  e.  ( rank `  x
)  ->  ( rank `  ( R1 `  y
) )  =  y )
2827eqcomd 2465 . . . . . . . . . . . . 13  |-  ( y  e.  ( rank `  x
)  ->  y  =  ( rank `  ( R1 `  y ) ) )
29 fvex 5882 . . . . . . . . . . . . . 14  |-  ( R1
`  y )  e. 
_V
30 fveq2 5872 . . . . . . . . . . . . . . 15  |-  ( z  =  ( R1 `  y )  ->  ( rank `  z )  =  ( rank `  ( R1 `  y ) ) )
3130eqeq2d 2471 . . . . . . . . . . . . . 14  |-  ( z  =  ( R1 `  y )  ->  (
y  =  ( rank `  z )  <->  y  =  ( rank `  ( R1 `  y ) ) ) )
3229, 31spcev 3201 . . . . . . . . . . . . 13  |-  ( y  =  ( rank `  ( R1 `  y ) )  ->  E. z  y  =  ( rank `  z
) )
3328, 32syl 16 . . . . . . . . . . . 12  |-  ( y  e.  ( rank `  x
)  ->  E. z 
y  =  ( rank `  z ) )
3433ancli 551 . . . . . . . . . . 11  |-  ( y  e.  ( rank `  x
)  ->  ( y  e.  ( rank `  x
)  /\  E. z 
y  =  ( rank `  z ) ) )
3519, 34impbii 188 . . . . . . . . . 10  |-  ( ( y  e.  ( rank `  x )  /\  E. z  y  =  ( rank `  z ) )  <-> 
y  e.  ( rank `  x ) )
3615, 18, 353bitr3i 275 . . . . . . . . 9  |-  ( E. z ( ( rank `  z )  e.  (
rank `  x )  /\  y  =  ( rank `  z ) )  <-> 
y  e.  ( rank `  x ) )
3714, 36sylib 196 . . . . . . . 8  |-  ( E. z ( z  e.  x  /\  y  =  ( rank `  z
) )  ->  y  e.  ( rank `  x
) )
3811, 37sylbi 195 . . . . . . 7  |-  ( E. z  e.  x  y  =  ( rank `  z
)  ->  y  e.  ( rank `  x )
)
3938abssi 3571 . . . . . 6  |-  { y  |  E. z  e.  x  y  =  (
rank `  z ) }  C_  ( rank `  x
)
4039unissi 4274 . . . . 5  |-  U. {
y  |  E. z  e.  x  y  =  ( rank `  z ) }  C_  U. ( rank `  x )
4110, 40eqsstri 3529 . . . 4  |-  ( rank `  U. x )  C_  U. ( rank `  x
)
42 pwuni 4687 . . . . . . . 8  |-  x  C_  ~P U. x
436uniex 6595 . . . . . . . . . 10  |-  U. x  e.  _V
4443pwex 4639 . . . . . . . . 9  |-  ~P U. x  e.  _V
4544rankss 8284 . . . . . . . 8  |-  ( x 
C_  ~P U. x  -> 
( rank `  x )  C_  ( rank `  ~P U. x ) )
4642, 45ax-mp 5 . . . . . . 7  |-  ( rank `  x )  C_  ( rank `  ~P U. x
)
4743rankpw 8278 . . . . . . 7  |-  ( rank `  ~P U. x )  =  suc  ( rank `  U. x )
4846, 47sseqtri 3531 . . . . . 6  |-  ( rank `  x )  C_  suc  ( rank `  U. x )
4948unissi 4274 . . . . 5  |-  U. ( rank `  x )  C_  U.
suc  ( rank `  U. x )
50 rankon 8230 . . . . . 6  |-  ( rank `  U. x )  e.  On
5150onunisuci 5000 . . . . 5  |-  U. suc  ( rank `  U. x )  =  ( rank `  U. x )
5249, 51sseqtri 3531 . . . 4  |-  U. ( rank `  x )  C_  ( rank `  U. x )
5341, 52eqssi 3515 . . 3  |-  ( rank `  U. x )  = 
U. ( rank `  x
)
545, 53vtoclg 3167 . 2  |-  ( A  e.  _V  ->  ( rank `  U. A )  =  U. ( rank `  A ) )
55 uniexb 6609 . . . . 5  |-  ( A  e.  _V  <->  U. A  e. 
_V )
56 fvprc 5866 . . . . 5  |-  ( -. 
U. A  e.  _V  ->  ( rank `  U. A )  =  (/) )
5755, 56sylnbi 306 . . . 4  |-  ( -.  A  e.  _V  ->  (
rank `  U. A )  =  (/) )
58 uni0 4278 . . . 4  |-  U. (/)  =  (/)
5957, 58syl6eqr 2516 . . 3  |-  ( -.  A  e.  _V  ->  (
rank `  U. A )  =  U. (/) )
60 fvprc 5866 . . . 4  |-  ( -.  A  e.  _V  ->  (
rank `  A )  =  (/) )
6160unieqd 4261 . . 3  |-  ( -.  A  e.  _V  ->  U. ( rank `  A
)  =  U. (/) )
6259, 61eqtr4d 2501 . 2  |-  ( -.  A  e.  _V  ->  (
rank `  U. A )  =  U. ( rank `  A ) )
6354, 62pm2.61i 164 1  |-  ( rank `  U. A )  = 
U. ( rank `  A
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 369    = wceq 1395   E.wex 1613    e. wcel 1819   {cab 2442   E.wrex 2808   _Vcvv 3109    C_ wss 3471   (/)c0 3793   ~Pcpw 4015   U.cuni 4251   U_ciun 4332   Oncon0 4887   suc csuc 4889   dom cdm 5008    Fn wfn 5589   ` cfv 5594   R1cr1 8197   rankcrnk 8198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-reg 8036  ax-inf2 8075
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-om 6700  df-recs 7060  df-rdg 7094  df-r1 8199  df-rank 8200
This theorem is referenced by:  rankuniss  8301  rankbnd2  8304  rankxplim2  8315  rankxplim3  8316  rankxpsuc  8317  r1limwun  9131  hfuni  30003
  Copyright terms: Public domain W3C validator