MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ranksnb Structured version   Visualization version   Unicode version

Theorem ranksnb 8324
Description: The rank of a singleton. Theorem 15.17(v) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
ranksnb  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  { A } )  =  suc  ( rank `  A )
)

Proof of Theorem ranksnb
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5888 . . . . . 6  |-  ( y  =  A  ->  ( rank `  y )  =  ( rank `  A
) )
21eleq1d 2524 . . . . 5  |-  ( y  =  A  ->  (
( rank `  y )  e.  x  <->  ( rank `  A
)  e.  x ) )
32ralsng 4018 . . . 4  |-  ( A  e.  U. ( R1
" On )  -> 
( A. y  e. 
{ A }  ( rank `  y )  e.  x  <->  ( rank `  A
)  e.  x ) )
43rabbidv 3048 . . 3  |-  ( A  e.  U. ( R1
" On )  ->  { x  e.  On  |  A. y  e.  { A }  ( rank `  y )  e.  x }  =  { x  e.  On  |  ( rank `  A )  e.  x } )
54inteqd 4253 . 2  |-  ( A  e.  U. ( R1
" On )  ->  |^| { x  e.  On  |  A. y  e.  { A }  ( rank `  y )  e.  x }  =  |^| { x  e.  On  |  ( rank `  A )  e.  x } )
6 snwf 8306 . . 3  |-  ( A  e.  U. ( R1
" On )  ->  { A }  e.  U. ( R1 " On ) )
7 rankval3b 8323 . . 3  |-  ( { A }  e.  U. ( R1 " On )  ->  ( rank `  { A } )  =  |^| { x  e.  On  |  A. y  e.  { A }  ( rank `  y
)  e.  x }
)
86, 7syl 17 . 2  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  { A } )  =  |^| { x  e.  On  |  A. y  e.  { A }  ( rank `  y
)  e.  x }
)
9 rankon 8292 . . 3  |-  ( rank `  A )  e.  On
10 onsucmin 6675 . . 3  |-  ( (
rank `  A )  e.  On  ->  suc  ( rank `  A )  =  |^| { x  e.  On  | 
( rank `  A )  e.  x } )
119, 10mp1i 13 . 2  |-  ( A  e.  U. ( R1
" On )  ->  suc  ( rank `  A
)  =  |^| { x  e.  On  |  ( rank `  A )  e.  x } )
125, 8, 113eqtr4d 2506 1  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  { A } )  =  suc  ( rank `  A )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1455    e. wcel 1898   A.wral 2749   {crab 2753   {csn 3980   U.cuni 4212   |^|cint 4248   "cima 4856   Oncon0 5442   suc csuc 5444   ` cfv 5601   R1cr1 8259   rankcrnk 8260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-om 6720  df-wrecs 7054  df-recs 7116  df-rdg 7154  df-r1 8261  df-rank 8262
This theorem is referenced by:  rankprb  8348  ranksn  8351  rankcf  9228  rankaltopb  30795
  Copyright terms: Public domain W3C validator