MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1c Unicode version

Theorem rankr1c 7377
Description: A relationship between the rank function and the cumulative hierarchy of sets function  R1. Proposition 9.15(2) of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankr1c  |-  ( A  e.  U. ( R1
" On )  -> 
( B  =  (
rank `  A )  <->  ( -.  A  e.  ( R1 `  B )  /\  A  e.  ( R1 `  suc  B
) ) ) )

Proof of Theorem rankr1c
StepHypRef Expression
1 id 21 . . . 4  |-  ( B  =  ( rank `  A
)  ->  B  =  ( rank `  A )
)
2 rankdmr1 7357 . . . 4  |-  ( rank `  A )  e.  dom  R1
31, 2syl6eqel 2341 . . 3  |-  ( B  =  ( rank `  A
)  ->  B  e.  dom  R1 )
43a1i 12 . 2  |-  ( A  e.  U. ( R1
" On )  -> 
( B  =  (
rank `  A )  ->  B  e.  dom  R1 ) )
5 elfvdm 5407 . . . . 5  |-  ( A  e.  ( R1 `  suc  B )  ->  suc  B  e.  dom  R1 )
6 r1funlim 7322 . . . . . . 7  |-  ( Fun 
R1  /\  Lim  dom  R1 )
76simpri 450 . . . . . 6  |-  Lim  dom  R1
8 limsuc 4531 . . . . . 6  |-  ( Lim 
dom  R1  ->  ( B  e.  dom  R1  <->  suc  B  e. 
dom  R1 ) )
97, 8ax-mp 10 . . . . 5  |-  ( B  e.  dom  R1  <->  suc  B  e. 
dom  R1 )
105, 9sylibr 205 . . . 4  |-  ( A  e.  ( R1 `  suc  B )  ->  B  e.  dom  R1 )
1110adantl 454 . . 3  |-  ( ( -.  A  e.  ( R1 `  B )  /\  A  e.  ( R1 `  suc  B
) )  ->  B  e.  dom  R1 )
1211a1i 12 . 2  |-  ( A  e.  U. ( R1
" On )  -> 
( ( -.  A  e.  ( R1 `  B
)  /\  A  e.  ( R1 `  suc  B
) )  ->  B  e.  dom  R1 ) )
13 rankr1clem 7376 . . . . 5  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  dom  R1 )  ->  ( -.  A  e.  ( R1 `  B
)  <->  B  C_  ( rank `  A ) ) )
14 rankr1ag 7358 . . . . . . 7  |-  ( ( A  e.  U. ( R1 " On )  /\  suc  B  e.  dom  R1 )  ->  ( A  e.  ( R1 `  suc  B )  <->  ( rank `  A
)  e.  suc  B
) )
159, 14sylan2b 463 . . . . . 6  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  dom  R1 )  ->  ( A  e.  ( R1 `  suc  B )  <->  ( rank `  A
)  e.  suc  B
) )
16 rankon 7351 . . . . . . 7  |-  ( rank `  A )  e.  On
17 limord 4344 . . . . . . . . . 10  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
187, 17ax-mp 10 . . . . . . . . 9  |-  Ord  dom  R1
19 ordelon 4309 . . . . . . . . 9  |-  ( ( Ord  dom  R1  /\  B  e.  dom  R1 )  ->  B  e.  On )
2018, 19mpan 654 . . . . . . . 8  |-  ( B  e.  dom  R1  ->  B  e.  On )
2120adantl 454 . . . . . . 7  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  dom  R1 )  ->  B  e.  On )
22 onsssuc 4373 . . . . . . 7  |-  ( ( ( rank `  A
)  e.  On  /\  B  e.  On )  ->  ( ( rank `  A
)  C_  B  <->  ( rank `  A )  e.  suc  B ) )
2316, 21, 22sylancr 647 . . . . . 6  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  dom  R1 )  ->  ( ( rank `  A )  C_  B  <->  (
rank `  A )  e.  suc  B ) )
2415, 23bitr4d 249 . . . . 5  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  dom  R1 )  ->  ( A  e.  ( R1 `  suc  B )  <->  ( rank `  A
)  C_  B )
)
2513, 24anbi12d 694 . . . 4  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  dom  R1 )  ->  ( ( -.  A  e.  ( R1
`  B )  /\  A  e.  ( R1 ` 
suc  B ) )  <-> 
( B  C_  ( rank `  A )  /\  ( rank `  A )  C_  B ) ) )
26 eqss 3115 . . . 4  |-  ( B  =  ( rank `  A
)  <->  ( B  C_  ( rank `  A )  /\  ( rank `  A
)  C_  B )
)
2725, 26syl6rbbr 257 . . 3  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  dom  R1 )  ->  ( B  =  ( rank `  A
)  <->  ( -.  A  e.  ( R1 `  B
)  /\  A  e.  ( R1 `  suc  B
) ) ) )
2827ex 425 . 2  |-  ( A  e.  U. ( R1
" On )  -> 
( B  e.  dom  R1 
->  ( B  =  (
rank `  A )  <->  ( -.  A  e.  ( R1 `  B )  /\  A  e.  ( R1 `  suc  B
) ) ) ) )
294, 12, 28pm5.21ndd 345 1  |-  ( A  e.  U. ( R1
" On )  -> 
( B  =  (
rank `  A )  <->  ( -.  A  e.  ( R1 `  B )  /\  A  e.  ( R1 `  suc  B
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    C_ wss 3078   U.cuni 3727   Ord word 4284   Oncon0 4285   Lim wlim 4286   suc csuc 4287   dom cdm 4580   "cima 4583   Fun wfun 4586   ` cfv 4592   R1cr1 7318   rankcrnk 7319
This theorem is referenced by:  rankidn  7378  rankpwi  7379  rankr1g  7388  r1tskina  8284
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-recs 6274  df-rdg 6309  df-r1 7320  df-rank 7321
  Copyright terms: Public domain W3C validator