MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankpwi Unicode version

Theorem rankpwi 7379
Description: The rank of a power set. Part of Exercise 30 of [Enderton] p. 207. (Contributed by Mario Carneiro, 3-Jun-2013.)
Assertion
Ref Expression
rankpwi  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  ~P A )  =  suc  ( rank `  A ) )

Proof of Theorem rankpwi
StepHypRef Expression
1 rankidn 7378 . . . 4  |-  ( A  e.  U. ( R1
" On )  ->  -.  A  e.  ( R1 `  ( rank `  A
) ) )
2 rankon 7351 . . . . . . 7  |-  ( rank `  A )  e.  On
3 r1suc 7326 . . . . . . 7  |-  ( (
rank `  A )  e.  On  ->  ( R1 ` 
suc  ( rank `  A
) )  =  ~P ( R1 `  ( rank `  A ) ) )
42, 3ax-mp 10 . . . . . 6  |-  ( R1
`  suc  ( rank `  A ) )  =  ~P ( R1 `  ( rank `  A )
)
54eleq2i 2317 . . . . 5  |-  ( ~P A  e.  ( R1
`  suc  ( rank `  A ) )  <->  ~P A  e.  ~P ( R1 `  ( rank `  A )
) )
6 elpwi 3538 . . . . . 6  |-  ( ~P A  e.  ~P ( R1 `  ( rank `  A
) )  ->  ~P A  C_  ( R1 `  ( rank `  A )
) )
7 pwidg 3541 . . . . . . 7  |-  ( A  e.  U. ( R1
" On )  ->  A  e.  ~P A
)
8 ssel 3097 . . . . . . 7  |-  ( ~P A  C_  ( R1 `  ( rank `  A
) )  ->  ( A  e.  ~P A  ->  A  e.  ( R1
`  ( rank `  A
) ) ) )
97, 8syl5com 28 . . . . . 6  |-  ( A  e.  U. ( R1
" On )  -> 
( ~P A  C_  ( R1 `  ( rank `  A ) )  ->  A  e.  ( R1 `  ( rank `  A
) ) ) )
106, 9syl5 30 . . . . 5  |-  ( A  e.  U. ( R1
" On )  -> 
( ~P A  e. 
~P ( R1 `  ( rank `  A )
)  ->  A  e.  ( R1 `  ( rank `  A ) ) ) )
115, 10syl5bi 210 . . . 4  |-  ( A  e.  U. ( R1
" On )  -> 
( ~P A  e.  ( R1 `  suc  ( rank `  A )
)  ->  A  e.  ( R1 `  ( rank `  A ) ) ) )
121, 11mtod 170 . . 3  |-  ( A  e.  U. ( R1
" On )  ->  -.  ~P A  e.  ( R1 `  suc  ( rank `  A ) ) )
13 r1rankidb 7360 . . . . . . 7  |-  ( A  e.  U. ( R1
" On )  ->  A  C_  ( R1 `  ( rank `  A )
) )
14 sspwb 4117 . . . . . . 7  |-  ( A 
C_  ( R1 `  ( rank `  A )
)  <->  ~P A  C_  ~P ( R1 `  ( rank `  A ) ) )
1513, 14sylib 190 . . . . . 6  |-  ( A  e.  U. ( R1
" On )  ->  ~P A  C_  ~P ( R1 `  ( rank `  A
) ) )
1615, 4syl6sseqr 3146 . . . . 5  |-  ( A  e.  U. ( R1
" On )  ->  ~P A  C_  ( R1
`  suc  ( rank `  A ) ) )
17 fvex 5391 . . . . . 6  |-  ( R1
`  suc  ( rank `  A ) )  e. 
_V
1817elpw2 4064 . . . . 5  |-  ( ~P A  e.  ~P ( R1 `  suc  ( rank `  A ) )  <->  ~P A  C_  ( R1 `  suc  ( rank `  A )
) )
1916, 18sylibr 205 . . . 4  |-  ( A  e.  U. ( R1
" On )  ->  ~P A  e.  ~P ( R1 `  suc  ( rank `  A ) ) )
202onsuci 4520 . . . . 5  |-  suc  ( rank `  A )  e.  On
21 r1suc 7326 . . . . 5  |-  ( suc  ( rank `  A
)  e.  On  ->  ( R1 `  suc  suc  ( rank `  A )
)  =  ~P ( R1 `  suc  ( rank `  A ) ) )
2220, 21ax-mp 10 . . . 4  |-  ( R1
`  suc  suc  ( rank `  A ) )  =  ~P ( R1 `  suc  ( rank `  A
) )
2319, 22syl6eleqr 2344 . . 3  |-  ( A  e.  U. ( R1
" On )  ->  ~P A  e.  ( R1 `  suc  suc  ( rank `  A ) ) )
24 pwwf 7363 . . . 4  |-  ( A  e.  U. ( R1
" On )  <->  ~P A  e.  U. ( R1 " On ) )
25 rankr1c 7377 . . . 4  |-  ( ~P A  e.  U. ( R1 " On )  -> 
( suc  ( rank `  A )  =  (
rank `  ~P A )  <-> 
( -.  ~P A  e.  ( R1 `  suc  ( rank `  A )
)  /\  ~P A  e.  ( R1 `  suc  suc  ( rank `  A
) ) ) ) )
2624, 25sylbi 189 . . 3  |-  ( A  e.  U. ( R1
" On )  -> 
( suc  ( rank `  A )  =  (
rank `  ~P A )  <-> 
( -.  ~P A  e.  ( R1 `  suc  ( rank `  A )
)  /\  ~P A  e.  ( R1 `  suc  suc  ( rank `  A
) ) ) ) )
2712, 23, 26mpbir2and 893 . 2  |-  ( A  e.  U. ( R1
" On )  ->  suc  ( rank `  A
)  =  ( rank `  ~P A ) )
2827eqcomd 2258 1  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  ~P A )  =  suc  ( rank `  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    C_ wss 3078   ~Pcpw 3530   U.cuni 3727   Oncon0 4285   suc csuc 4287   "cima 4583   ` cfv 4592   R1cr1 7318   rankcrnk 7319
This theorem is referenced by:  rankpw  7399  r1pw  7401  r1pwcl  7403
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-recs 6274  df-rdg 6309  df-r1 7320  df-rank 7321
  Copyright terms: Public domain W3C validator