MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankopb Structured version   Unicode version

Theorem rankopb 8270
Description: The rank of an ordered pair. Part of Exercise 4 of [Kunen] p. 107. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
rankopb  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  <. A ,  B >. )  =  suc  suc  ( ( rank `  A )  u.  ( rank `  B
) ) )

Proof of Theorem rankopb
StepHypRef Expression
1 dfopg 4211 . . 3  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  <. A ,  B >.  =  { { A } ,  { A ,  B } } )
21fveq2d 5870 . 2  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  <. A ,  B >. )  =  ( rank `  { { A } ,  { A ,  B } } ) )
3 snwf 8227 . . . 4  |-  ( A  e.  U. ( R1
" On )  ->  { A }  e.  U. ( R1 " On ) )
43adantr 465 . . 3  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  { A }  e.  U. ( R1 " On ) )
5 prwf 8229 . . 3  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  { A ,  B }  e.  U. ( R1 " On ) )
6 rankprb 8269 . . 3  |-  ( ( { A }  e.  U. ( R1 " On )  /\  { A ,  B }  e.  U. ( R1 " On ) )  ->  ( rank `  { { A } ,  { A ,  B } } )  =  suc  ( ( rank `  { A } )  u.  ( rank `  { A ,  B } ) ) )
74, 5, 6syl2anc 661 . 2  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  { { A } ,  { A ,  B } } )  =  suc  ( ( rank `  { A } )  u.  ( rank `  { A ,  B } ) ) )
8 snsspr1 4176 . . . . . 6  |-  { A }  C_  { A ,  B }
9 ssequn1 3674 . . . . . 6  |-  ( { A }  C_  { A ,  B }  <->  ( { A }  u.  { A ,  B } )  =  { A ,  B } )
108, 9mpbi 208 . . . . 5  |-  ( { A }  u.  { A ,  B }
)  =  { A ,  B }
1110fveq2i 5869 . . . 4  |-  ( rank `  ( { A }  u.  { A ,  B } ) )  =  ( rank `  { A ,  B }
)
12 rankunb 8268 . . . . 5  |-  ( ( { A }  e.  U. ( R1 " On )  /\  { A ,  B }  e.  U. ( R1 " On ) )  ->  ( rank `  ( { A }  u.  { A ,  B }
) )  =  ( ( rank `  { A } )  u.  ( rank `  { A ,  B } ) ) )
134, 5, 12syl2anc 661 . . . 4  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  ( { A }  u.  { A ,  B }
) )  =  ( ( rank `  { A } )  u.  ( rank `  { A ,  B } ) ) )
14 rankprb 8269 . . . 4  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  { A ,  B }
)  =  suc  (
( rank `  A )  u.  ( rank `  B
) ) )
1511, 13, 143eqtr3a 2532 . . 3  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( ( rank `  { A } )  u.  ( rank `  { A ,  B }
) )  =  suc  ( ( rank `  A
)  u.  ( rank `  B ) ) )
16 suceq 4943 . . 3  |-  ( ( ( rank `  { A } )  u.  ( rank `  { A ,  B } ) )  =  suc  ( ( rank `  A )  u.  ( rank `  B ) )  ->  suc  ( ( rank `  { A }
)  u.  ( rank `  { A ,  B } ) )  =  suc  suc  ( ( rank `  A )  u.  ( rank `  B
) ) )
1715, 16syl 16 . 2  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  suc  ( ( rank `  { A }
)  u.  ( rank `  { A ,  B } ) )  =  suc  suc  ( ( rank `  A )  u.  ( rank `  B
) ) )
182, 7, 173eqtrd 2512 1  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  <. A ,  B >. )  =  suc  suc  ( ( rank `  A )  u.  ( rank `  B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    u. cun 3474    C_ wss 3476   {csn 4027   {cpr 4029   <.cop 4033   U.cuni 4245   Oncon0 4878   suc csuc 4880   "cima 5002   ` cfv 5588   R1cr1 8180   rankcrnk 8181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-om 6685  df-recs 7042  df-rdg 7076  df-r1 8182  df-rank 8183
This theorem is referenced by:  rankop  8276
  Copyright terms: Public domain W3C validator