MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankonidlem Structured version   Visualization version   Unicode version

Theorem rankonidlem 8317
Description: Lemma for rankonid 8318. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 22-Mar-2013.)
Assertion
Ref Expression
rankonidlem  |-  ( A  e.  dom  R1  ->  ( A  e.  U. ( R1 " On )  /\  ( rank `  A )  =  A ) )

Proof of Theorem rankonidlem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 8255 . . . . 5  |-  ( Fun 
R1  /\  Lim  dom  R1 )
21simpri 469 . . . 4  |-  Lim  dom  R1
3 limord 5489 . . . 4  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
42, 3ax-mp 5 . . 3  |-  Ord  dom  R1
5 ordelon 5454 . . 3  |-  ( ( Ord  dom  R1  /\  A  e.  dom  R1 )  ->  A  e.  On )
64, 5mpan 684 . 2  |-  ( A  e.  dom  R1  ->  A  e.  On )
7 eleq1 2537 . . . 4  |-  ( x  =  y  ->  (
x  e.  dom  R1  <->  y  e.  dom  R1 ) )
8 eleq1 2537 . . . . 5  |-  ( x  =  y  ->  (
x  e.  U. ( R1 " On )  <->  y  e.  U. ( R1 " On ) ) )
9 fveq2 5879 . . . . . 6  |-  ( x  =  y  ->  ( rank `  x )  =  ( rank `  y
) )
10 id 22 . . . . . 6  |-  ( x  =  y  ->  x  =  y )
119, 10eqeq12d 2486 . . . . 5  |-  ( x  =  y  ->  (
( rank `  x )  =  x  <->  ( rank `  y
)  =  y ) )
128, 11anbi12d 725 . . . 4  |-  ( x  =  y  ->  (
( x  e.  U. ( R1 " On )  /\  ( rank `  x
)  =  x )  <-> 
( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) ) )
137, 12imbi12d 327 . . 3  |-  ( x  =  y  ->  (
( x  e.  dom  R1 
->  ( x  e.  U. ( R1 " On )  /\  ( rank `  x
)  =  x ) )  <->  ( y  e. 
dom  R1  ->  ( y  e.  U. ( R1
" On )  /\  ( rank `  y )  =  y ) ) ) )
14 eleq1 2537 . . . 4  |-  ( x  =  A  ->  (
x  e.  dom  R1  <->  A  e.  dom  R1 ) )
15 eleq1 2537 . . . . 5  |-  ( x  =  A  ->  (
x  e.  U. ( R1 " On )  <->  A  e.  U. ( R1 " On ) ) )
16 fveq2 5879 . . . . . 6  |-  ( x  =  A  ->  ( rank `  x )  =  ( rank `  A
) )
17 id 22 . . . . . 6  |-  ( x  =  A  ->  x  =  A )
1816, 17eqeq12d 2486 . . . . 5  |-  ( x  =  A  ->  (
( rank `  x )  =  x  <->  ( rank `  A
)  =  A ) )
1915, 18anbi12d 725 . . . 4  |-  ( x  =  A  ->  (
( x  e.  U. ( R1 " On )  /\  ( rank `  x
)  =  x )  <-> 
( A  e.  U. ( R1 " On )  /\  ( rank `  A
)  =  A ) ) )
2014, 19imbi12d 327 . . 3  |-  ( x  =  A  ->  (
( x  e.  dom  R1 
->  ( x  e.  U. ( R1 " On )  /\  ( rank `  x
)  =  x ) )  <->  ( A  e. 
dom  R1  ->  ( A  e.  U. ( R1
" On )  /\  ( rank `  A )  =  A ) ) ) )
21 ordtr1 5473 . . . . . . . . . 10  |-  ( Ord 
dom  R1  ->  ( ( y  e.  x  /\  x  e.  dom  R1 )  ->  y  e.  dom  R1 ) )
224, 21ax-mp 5 . . . . . . . . 9  |-  ( ( y  e.  x  /\  x  e.  dom  R1 )  ->  y  e.  dom  R1 )
2322ancoms 460 . . . . . . . 8  |-  ( ( x  e.  dom  R1  /\  y  e.  x )  ->  y  e.  dom  R1 )
24 pm5.5 343 . . . . . . . 8  |-  ( y  e.  dom  R1  ->  ( ( y  e.  dom  R1 
->  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  <->  ( y  e. 
U. ( R1 " On )  /\  ( rank `  y )  =  y ) ) )
2523, 24syl 17 . . . . . . 7  |-  ( ( x  e.  dom  R1  /\  y  e.  x )  ->  ( ( y  e.  dom  R1  ->  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  <-> 
( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) ) )
2625ralbidva 2828 . . . . . 6  |-  ( x  e.  dom  R1  ->  ( A. y  e.  x  ( y  e.  dom  R1 
->  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  <->  A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) ) )
27 simplr 770 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
y  e.  x )
28 ordelon 5454 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Ord  dom  R1  /\  x  e.  dom  R1 )  ->  x  e.  On )
294, 28mpan 684 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  dom  R1  ->  x  e.  On )
3029ad2antrr 740 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  ->  x  e.  On )
31 eloni 5440 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  On  ->  Ord  x )
3230, 31syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  ->  Ord  x )
33 ordelsuc 6666 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  x  /\  Ord  x )  ->  (
y  e.  x  <->  suc  y  C_  x ) )
3427, 32, 33syl2anc 673 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
( y  e.  x  <->  suc  y  C_  x )
)
3527, 34mpbid 215 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  ->  suc  y  C_  x )
3623adantr 472 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
y  e.  dom  R1 )
37 limsuc 6695 . . . . . . . . . . . . . . . . . . . 20  |-  ( Lim 
dom  R1  ->  ( y  e.  dom  R1  <->  suc  y  e. 
dom  R1 ) )
382, 37ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  dom  R1  <->  suc  y  e. 
dom  R1 )
3936, 38sylib 201 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  ->  suc  y  e.  dom  R1 )
40 simpll 768 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  ->  x  e.  dom  R1 )
41 r1ord3g 8268 . . . . . . . . . . . . . . . . . 18  |-  ( ( suc  y  e.  dom  R1 
/\  x  e.  dom  R1 )  ->  ( suc  y  C_  x  ->  ( R1 `  suc  y ) 
C_  ( R1 `  x ) ) )
4239, 40, 41syl2anc 673 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
( suc  y  C_  x  ->  ( R1 `  suc  y )  C_  ( R1 `  x ) ) )
4335, 42mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
( R1 `  suc  y )  C_  ( R1 `  x ) )
44 rankidb 8289 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  U. ( R1
" On )  -> 
y  e.  ( R1
`  suc  ( rank `  y ) ) )
4544ad2antrl 742 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
y  e.  ( R1
`  suc  ( rank `  y ) ) )
46 suceq 5495 . . . . . . . . . . . . . . . . . . 19  |-  ( (
rank `  y )  =  y  ->  suc  ( rank `  y )  =  suc  y )
4746ad2antll 743 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  ->  suc  ( rank `  y
)  =  suc  y
)
4847fveq2d 5883 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
( R1 `  suc  ( rank `  y )
)  =  ( R1
`  suc  y )
)
4945, 48eleqtrd 2551 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
y  e.  ( R1
`  suc  y )
)
5043, 49sseldd 3419 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
y  e.  ( R1
`  x ) )
5150ex 441 . . . . . . . . . . . . . 14  |-  ( ( x  e.  dom  R1  /\  y  e.  x )  ->  ( ( y  e.  U. ( R1
" On )  /\  ( rank `  y )  =  y )  -> 
y  e.  ( R1
`  x ) ) )
5251ralimdva 2805 . . . . . . . . . . . . 13  |-  ( x  e.  dom  R1  ->  ( A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y )  ->  A. y  e.  x  y  e.  ( R1 `  x ) ) )
5352imp 436 . . . . . . . . . . . 12  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  A. y  e.  x  y  e.  ( R1 `  x ) )
54 dfss3 3408 . . . . . . . . . . . 12  |-  ( x 
C_  ( R1 `  x )  <->  A. y  e.  x  y  e.  ( R1 `  x ) )
5553, 54sylibr 217 . . . . . . . . . . 11  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  x  C_  ( R1 `  x ) )
56 vex 3034 . . . . . . . . . . . 12  |-  x  e. 
_V
5756elpw 3948 . . . . . . . . . . 11  |-  ( x  e.  ~P ( R1
`  x )  <->  x  C_  ( R1 `  x ) )
5855, 57sylibr 217 . . . . . . . . . 10  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  x  e.  ~P ( R1 `  x
) )
59 r1sucg 8258 . . . . . . . . . . 11  |-  ( x  e.  dom  R1  ->  ( R1 `  suc  x
)  =  ~P ( R1 `  x ) )
6059adantr 472 . . . . . . . . . 10  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  ( R1 ` 
suc  x )  =  ~P ( R1 `  x ) )
6158, 60eleqtrrd 2552 . . . . . . . . 9  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  x  e.  ( R1 `  suc  x
) )
62 r1elwf 8285 . . . . . . . . 9  |-  ( x  e.  ( R1 `  suc  x )  ->  x  e.  U. ( R1 " On ) )
6361, 62syl 17 . . . . . . . 8  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  x  e.  U. ( R1 " On ) )
64 rankval3b 8315 . . . . . . . . . 10  |-  ( x  e.  U. ( R1
" On )  -> 
( rank `  x )  =  |^| { z  e.  On  |  A. y  e.  x  ( rank `  y )  e.  z } )
6563, 64syl 17 . . . . . . . . 9  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  ( rank `  x )  =  |^| { z  e.  On  |  A. y  e.  x  ( rank `  y )  e.  z } )
66 eleq1 2537 . . . . . . . . . . . . . . . 16  |-  ( (
rank `  y )  =  y  ->  ( (
rank `  y )  e.  z  <->  y  e.  z ) )
6766adantl 473 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y )  -> 
( ( rank `  y
)  e.  z  <->  y  e.  z ) )
6867ralimi 2796 . . . . . . . . . . . . . 14  |-  ( A. y  e.  x  (
y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y )  ->  A. y  e.  x  ( ( rank `  y
)  e.  z  <->  y  e.  z ) )
69 ralbi 2908 . . . . . . . . . . . . . 14  |-  ( A. y  e.  x  (
( rank `  y )  e.  z  <->  y  e.  z )  ->  ( A. y  e.  x  ( rank `  y )  e.  z  <->  A. y  e.  x  y  e.  z )
)
7068, 69syl 17 . . . . . . . . . . . . 13  |-  ( A. y  e.  x  (
y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y )  -> 
( A. y  e.  x  ( rank `  y
)  e.  z  <->  A. y  e.  x  y  e.  z ) )
71 dfss3 3408 . . . . . . . . . . . . 13  |-  ( x 
C_  z  <->  A. y  e.  x  y  e.  z )
7270, 71syl6bbr 271 . . . . . . . . . . . 12  |-  ( A. y  e.  x  (
y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y )  -> 
( A. y  e.  x  ( rank `  y
)  e.  z  <->  x  C_  z
) )
7372rabbidv 3022 . . . . . . . . . . 11  |-  ( A. y  e.  x  (
y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y )  ->  { z  e.  On  |  A. y  e.  x  ( rank `  y )  e.  z }  =  {
z  e.  On  |  x  C_  z } )
7473inteqd 4231 . . . . . . . . . 10  |-  ( A. y  e.  x  (
y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y )  ->  |^| { z  e.  On  |  A. y  e.  x  ( rank `  y )  e.  z }  =  |^| { z  e.  On  |  x  C_  z } )
7574adantl 473 . . . . . . . . 9  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  |^| { z  e.  On  |  A. y  e.  x  ( rank `  y )  e.  z }  =  |^| { z  e.  On  |  x  C_  z } )
7629adantr 472 . . . . . . . . . 10  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  x  e.  On )
77 intmin 4246 . . . . . . . . . 10  |-  ( x  e.  On  ->  |^| { z  e.  On  |  x 
C_  z }  =  x )
7876, 77syl 17 . . . . . . . . 9  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  |^| { z  e.  On  |  x 
C_  z }  =  x )
7965, 75, 783eqtrd 2509 . . . . . . . 8  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  ( rank `  x )  =  x )
8063, 79jca 541 . . . . . . 7  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  ( x  e.  U. ( R1 " On )  /\  ( rank `  x )  =  x ) )
8180ex 441 . . . . . 6  |-  ( x  e.  dom  R1  ->  ( A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y )  ->  ( x  e. 
U. ( R1 " On )  /\  ( rank `  x )  =  x ) ) )
8226, 81sylbid 223 . . . . 5  |-  ( x  e.  dom  R1  ->  ( A. y  e.  x  ( y  e.  dom  R1 
->  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  ( x  e.  U. ( R1 " On )  /\  ( rank `  x )  =  x ) ) )
8382com12 31 . . . 4  |-  ( A. y  e.  x  (
y  e.  dom  R1  ->  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  ( x  e.  dom  R1  ->  (
x  e.  U. ( R1 " On )  /\  ( rank `  x )  =  x ) ) )
8483a1i 11 . . 3  |-  ( x  e.  On  ->  ( A. y  e.  x  ( y  e.  dom  R1 
->  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  ( x  e.  dom  R1  ->  (
x  e.  U. ( R1 " On )  /\  ( rank `  x )  =  x ) ) ) )
8513, 20, 84tfis3 6703 . 2  |-  ( A  e.  On  ->  ( A  e.  dom  R1  ->  ( A  e.  U. ( R1 " On )  /\  ( rank `  A )  =  A ) ) )
866, 85mpcom 36 1  |-  ( A  e.  dom  R1  ->  ( A  e.  U. ( R1 " On )  /\  ( rank `  A )  =  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   {crab 2760    C_ wss 3390   ~Pcpw 3942   U.cuni 4190   |^|cint 4226   dom cdm 4839   "cima 4842   Ord word 5429   Oncon0 5430   Lim wlim 5431   suc csuc 5432   Fun wfun 5583   ` cfv 5589   R1cr1 8251   rankcrnk 8252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-r1 8253  df-rank 8254
This theorem is referenced by:  rankonid  8318  onwf  8319  onssr1  8320
  Copyright terms: Public domain W3C validator