MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankonidlem Structured version   Unicode version

Theorem rankonidlem 8242
Description: Lemma for rankonid 8243. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 22-Mar-2013.)
Assertion
Ref Expression
rankonidlem  |-  ( A  e.  dom  R1  ->  ( A  e.  U. ( R1 " On )  /\  ( rank `  A )  =  A ) )

Proof of Theorem rankonidlem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 8180 . . . . 5  |-  ( Fun 
R1  /\  Lim  dom  R1 )
21simpri 462 . . . 4  |-  Lim  dom  R1
3 limord 4937 . . . 4  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
42, 3ax-mp 5 . . 3  |-  Ord  dom  R1
5 ordelon 4902 . . 3  |-  ( ( Ord  dom  R1  /\  A  e.  dom  R1 )  ->  A  e.  On )
64, 5mpan 670 . 2  |-  ( A  e.  dom  R1  ->  A  e.  On )
7 eleq1 2539 . . . 4  |-  ( x  =  y  ->  (
x  e.  dom  R1  <->  y  e.  dom  R1 ) )
8 eleq1 2539 . . . . 5  |-  ( x  =  y  ->  (
x  e.  U. ( R1 " On )  <->  y  e.  U. ( R1 " On ) ) )
9 fveq2 5864 . . . . . 6  |-  ( x  =  y  ->  ( rank `  x )  =  ( rank `  y
) )
10 id 22 . . . . . 6  |-  ( x  =  y  ->  x  =  y )
119, 10eqeq12d 2489 . . . . 5  |-  ( x  =  y  ->  (
( rank `  x )  =  x  <->  ( rank `  y
)  =  y ) )
128, 11anbi12d 710 . . . 4  |-  ( x  =  y  ->  (
( x  e.  U. ( R1 " On )  /\  ( rank `  x
)  =  x )  <-> 
( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) ) )
137, 12imbi12d 320 . . 3  |-  ( x  =  y  ->  (
( x  e.  dom  R1 
->  ( x  e.  U. ( R1 " On )  /\  ( rank `  x
)  =  x ) )  <->  ( y  e. 
dom  R1  ->  ( y  e.  U. ( R1
" On )  /\  ( rank `  y )  =  y ) ) ) )
14 eleq1 2539 . . . 4  |-  ( x  =  A  ->  (
x  e.  dom  R1  <->  A  e.  dom  R1 ) )
15 eleq1 2539 . . . . 5  |-  ( x  =  A  ->  (
x  e.  U. ( R1 " On )  <->  A  e.  U. ( R1 " On ) ) )
16 fveq2 5864 . . . . . 6  |-  ( x  =  A  ->  ( rank `  x )  =  ( rank `  A
) )
17 id 22 . . . . . 6  |-  ( x  =  A  ->  x  =  A )
1816, 17eqeq12d 2489 . . . . 5  |-  ( x  =  A  ->  (
( rank `  x )  =  x  <->  ( rank `  A
)  =  A ) )
1915, 18anbi12d 710 . . . 4  |-  ( x  =  A  ->  (
( x  e.  U. ( R1 " On )  /\  ( rank `  x
)  =  x )  <-> 
( A  e.  U. ( R1 " On )  /\  ( rank `  A
)  =  A ) ) )
2014, 19imbi12d 320 . . 3  |-  ( x  =  A  ->  (
( x  e.  dom  R1 
->  ( x  e.  U. ( R1 " On )  /\  ( rank `  x
)  =  x ) )  <->  ( A  e. 
dom  R1  ->  ( A  e.  U. ( R1
" On )  /\  ( rank `  A )  =  A ) ) ) )
21 ordtr1 4921 . . . . . . . . . 10  |-  ( Ord 
dom  R1  ->  ( ( y  e.  x  /\  x  e.  dom  R1 )  ->  y  e.  dom  R1 ) )
224, 21ax-mp 5 . . . . . . . . 9  |-  ( ( y  e.  x  /\  x  e.  dom  R1 )  ->  y  e.  dom  R1 )
2322ancoms 453 . . . . . . . 8  |-  ( ( x  e.  dom  R1  /\  y  e.  x )  ->  y  e.  dom  R1 )
24 pm5.5 336 . . . . . . . 8  |-  ( y  e.  dom  R1  ->  ( ( y  e.  dom  R1 
->  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  <->  ( y  e. 
U. ( R1 " On )  /\  ( rank `  y )  =  y ) ) )
2523, 24syl 16 . . . . . . 7  |-  ( ( x  e.  dom  R1  /\  y  e.  x )  ->  ( ( y  e.  dom  R1  ->  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  <-> 
( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) ) )
2625ralbidva 2900 . . . . . 6  |-  ( x  e.  dom  R1  ->  ( A. y  e.  x  ( y  e.  dom  R1 
->  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  <->  A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) ) )
27 simplr 754 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
y  e.  x )
28 ordelon 4902 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Ord  dom  R1  /\  x  e.  dom  R1 )  ->  x  e.  On )
294, 28mpan 670 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  dom  R1  ->  x  e.  On )
3029ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  ->  x  e.  On )
31 eloni 4888 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  On  ->  Ord  x )
3230, 31syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  ->  Ord  x )
33 ordelsuc 6633 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  x  /\  Ord  x )  ->  (
y  e.  x  <->  suc  y  C_  x ) )
3427, 32, 33syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
( y  e.  x  <->  suc  y  C_  x )
)
3527, 34mpbid 210 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  ->  suc  y  C_  x )
3623adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
y  e.  dom  R1 )
37 limsuc 6662 . . . . . . . . . . . . . . . . . . . 20  |-  ( Lim 
dom  R1  ->  ( y  e.  dom  R1  <->  suc  y  e. 
dom  R1 ) )
382, 37ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  dom  R1  <->  suc  y  e. 
dom  R1 )
3936, 38sylib 196 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  ->  suc  y  e.  dom  R1 )
40 simpll 753 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  ->  x  e.  dom  R1 )
41 r1ord3g 8193 . . . . . . . . . . . . . . . . . 18  |-  ( ( suc  y  e.  dom  R1 
/\  x  e.  dom  R1 )  ->  ( suc  y  C_  x  ->  ( R1 `  suc  y ) 
C_  ( R1 `  x ) ) )
4239, 40, 41syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
( suc  y  C_  x  ->  ( R1 `  suc  y )  C_  ( R1 `  x ) ) )
4335, 42mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
( R1 `  suc  y )  C_  ( R1 `  x ) )
44 rankidb 8214 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  U. ( R1
" On )  -> 
y  e.  ( R1
`  suc  ( rank `  y ) ) )
4544ad2antrl 727 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
y  e.  ( R1
`  suc  ( rank `  y ) ) )
46 suceq 4943 . . . . . . . . . . . . . . . . . . 19  |-  ( (
rank `  y )  =  y  ->  suc  ( rank `  y )  =  suc  y )
4746ad2antll 728 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  ->  suc  ( rank `  y
)  =  suc  y
)
4847fveq2d 5868 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
( R1 `  suc  ( rank `  y )
)  =  ( R1
`  suc  y )
)
4945, 48eleqtrd 2557 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
y  e.  ( R1
`  suc  y )
)
5043, 49sseldd 3505 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
y  e.  ( R1
`  x ) )
5150ex 434 . . . . . . . . . . . . . 14  |-  ( ( x  e.  dom  R1  /\  y  e.  x )  ->  ( ( y  e.  U. ( R1
" On )  /\  ( rank `  y )  =  y )  -> 
y  e.  ( R1
`  x ) ) )
5251ralimdva 2872 . . . . . . . . . . . . 13  |-  ( x  e.  dom  R1  ->  ( A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y )  ->  A. y  e.  x  y  e.  ( R1 `  x ) ) )
5352imp 429 . . . . . . . . . . . 12  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  A. y  e.  x  y  e.  ( R1 `  x ) )
54 dfss3 3494 . . . . . . . . . . . 12  |-  ( x 
C_  ( R1 `  x )  <->  A. y  e.  x  y  e.  ( R1 `  x ) )
5553, 54sylibr 212 . . . . . . . . . . 11  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  x  C_  ( R1 `  x ) )
56 vex 3116 . . . . . . . . . . . 12  |-  x  e. 
_V
5756elpw 4016 . . . . . . . . . . 11  |-  ( x  e.  ~P ( R1
`  x )  <->  x  C_  ( R1 `  x ) )
5855, 57sylibr 212 . . . . . . . . . 10  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  x  e.  ~P ( R1 `  x
) )
59 r1sucg 8183 . . . . . . . . . . 11  |-  ( x  e.  dom  R1  ->  ( R1 `  suc  x
)  =  ~P ( R1 `  x ) )
6059adantr 465 . . . . . . . . . 10  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  ( R1 ` 
suc  x )  =  ~P ( R1 `  x ) )
6158, 60eleqtrrd 2558 . . . . . . . . 9  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  x  e.  ( R1 `  suc  x
) )
62 r1elwf 8210 . . . . . . . . 9  |-  ( x  e.  ( R1 `  suc  x )  ->  x  e.  U. ( R1 " On ) )
6361, 62syl 16 . . . . . . . 8  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  x  e.  U. ( R1 " On ) )
64 rankval3b 8240 . . . . . . . . . 10  |-  ( x  e.  U. ( R1
" On )  -> 
( rank `  x )  =  |^| { z  e.  On  |  A. y  e.  x  ( rank `  y )  e.  z } )
6563, 64syl 16 . . . . . . . . 9  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  ( rank `  x )  =  |^| { z  e.  On  |  A. y  e.  x  ( rank `  y )  e.  z } )
66 eleq1 2539 . . . . . . . . . . . . . . . 16  |-  ( (
rank `  y )  =  y  ->  ( (
rank `  y )  e.  z  <->  y  e.  z ) )
6766adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y )  -> 
( ( rank `  y
)  e.  z  <->  y  e.  z ) )
6867ralimi 2857 . . . . . . . . . . . . . 14  |-  ( A. y  e.  x  (
y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y )  ->  A. y  e.  x  ( ( rank `  y
)  e.  z  <->  y  e.  z ) )
69 ralbi 2993 . . . . . . . . . . . . . 14  |-  ( A. y  e.  x  (
( rank `  y )  e.  z  <->  y  e.  z )  ->  ( A. y  e.  x  ( rank `  y )  e.  z  <->  A. y  e.  x  y  e.  z )
)
7068, 69syl 16 . . . . . . . . . . . . 13  |-  ( A. y  e.  x  (
y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y )  -> 
( A. y  e.  x  ( rank `  y
)  e.  z  <->  A. y  e.  x  y  e.  z ) )
71 dfss3 3494 . . . . . . . . . . . . 13  |-  ( x 
C_  z  <->  A. y  e.  x  y  e.  z )
7270, 71syl6bbr 263 . . . . . . . . . . . 12  |-  ( A. y  e.  x  (
y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y )  -> 
( A. y  e.  x  ( rank `  y
)  e.  z  <->  x  C_  z
) )
7372rabbidv 3105 . . . . . . . . . . 11  |-  ( A. y  e.  x  (
y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y )  ->  { z  e.  On  |  A. y  e.  x  ( rank `  y )  e.  z }  =  {
z  e.  On  |  x  C_  z } )
7473inteqd 4287 . . . . . . . . . 10  |-  ( A. y  e.  x  (
y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y )  ->  |^| { z  e.  On  |  A. y  e.  x  ( rank `  y )  e.  z }  =  |^| { z  e.  On  |  x  C_  z } )
7574adantl 466 . . . . . . . . 9  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  |^| { z  e.  On  |  A. y  e.  x  ( rank `  y )  e.  z }  =  |^| { z  e.  On  |  x  C_  z } )
7629adantr 465 . . . . . . . . . 10  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  x  e.  On )
77 intmin 4302 . . . . . . . . . 10  |-  ( x  e.  On  ->  |^| { z  e.  On  |  x 
C_  z }  =  x )
7876, 77syl 16 . . . . . . . . 9  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  |^| { z  e.  On  |  x 
C_  z }  =  x )
7965, 75, 783eqtrd 2512 . . . . . . . 8  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  ( rank `  x )  =  x )
8063, 79jca 532 . . . . . . 7  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  ( x  e.  U. ( R1 " On )  /\  ( rank `  x )  =  x ) )
8180ex 434 . . . . . 6  |-  ( x  e.  dom  R1  ->  ( A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y )  ->  ( x  e. 
U. ( R1 " On )  /\  ( rank `  x )  =  x ) ) )
8226, 81sylbid 215 . . . . 5  |-  ( x  e.  dom  R1  ->  ( A. y  e.  x  ( y  e.  dom  R1 
->  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  ( x  e.  U. ( R1 " On )  /\  ( rank `  x )  =  x ) ) )
8382com12 31 . . . 4  |-  ( A. y  e.  x  (
y  e.  dom  R1  ->  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  ( x  e.  dom  R1  ->  (
x  e.  U. ( R1 " On )  /\  ( rank `  x )  =  x ) ) )
8483a1i 11 . . 3  |-  ( x  e.  On  ->  ( A. y  e.  x  ( y  e.  dom  R1 
->  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  ( x  e.  dom  R1  ->  (
x  e.  U. ( R1 " On )  /\  ( rank `  x )  =  x ) ) ) )
8513, 20, 84tfis3 6670 . 2  |-  ( A  e.  On  ->  ( A  e.  dom  R1  ->  ( A  e.  U. ( R1 " On )  /\  ( rank `  A )  =  A ) ) )
866, 85mpcom 36 1  |-  ( A  e.  dom  R1  ->  ( A  e.  U. ( R1 " On )  /\  ( rank `  A )  =  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   {crab 2818    C_ wss 3476   ~Pcpw 4010   U.cuni 4245   |^|cint 4282   Ord word 4877   Oncon0 4878   Lim wlim 4879   suc csuc 4880   dom cdm 4999   "cima 5002   Fun wfun 5580   ` cfv 5586   R1cr1 8176   rankcrnk 8177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-om 6679  df-recs 7039  df-rdg 7073  df-r1 8178  df-rank 8179
This theorem is referenced by:  rankonid  8243  onwf  8244  onssr1  8245
  Copyright terms: Public domain W3C validator