MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankonidlem Structured version   Unicode version

Theorem rankonidlem 8050
Description: Lemma for rankonid 8051. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 22-Mar-2013.)
Assertion
Ref Expression
rankonidlem  |-  ( A  e.  dom  R1  ->  ( A  e.  U. ( R1 " On )  /\  ( rank `  A )  =  A ) )

Proof of Theorem rankonidlem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 7988 . . . . 5  |-  ( Fun 
R1  /\  Lim  dom  R1 )
21simpri 462 . . . 4  |-  Lim  dom  R1
3 limord 4793 . . . 4  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
42, 3ax-mp 5 . . 3  |-  Ord  dom  R1
5 ordelon 4758 . . 3  |-  ( ( Ord  dom  R1  /\  A  e.  dom  R1 )  ->  A  e.  On )
64, 5mpan 670 . 2  |-  ( A  e.  dom  R1  ->  A  e.  On )
7 eleq1 2503 . . . 4  |-  ( x  =  y  ->  (
x  e.  dom  R1  <->  y  e.  dom  R1 ) )
8 eleq1 2503 . . . . 5  |-  ( x  =  y  ->  (
x  e.  U. ( R1 " On )  <->  y  e.  U. ( R1 " On ) ) )
9 fveq2 5706 . . . . . 6  |-  ( x  =  y  ->  ( rank `  x )  =  ( rank `  y
) )
10 id 22 . . . . . 6  |-  ( x  =  y  ->  x  =  y )
119, 10eqeq12d 2457 . . . . 5  |-  ( x  =  y  ->  (
( rank `  x )  =  x  <->  ( rank `  y
)  =  y ) )
128, 11anbi12d 710 . . . 4  |-  ( x  =  y  ->  (
( x  e.  U. ( R1 " On )  /\  ( rank `  x
)  =  x )  <-> 
( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) ) )
137, 12imbi12d 320 . . 3  |-  ( x  =  y  ->  (
( x  e.  dom  R1 
->  ( x  e.  U. ( R1 " On )  /\  ( rank `  x
)  =  x ) )  <->  ( y  e. 
dom  R1  ->  ( y  e.  U. ( R1
" On )  /\  ( rank `  y )  =  y ) ) ) )
14 eleq1 2503 . . . 4  |-  ( x  =  A  ->  (
x  e.  dom  R1  <->  A  e.  dom  R1 ) )
15 eleq1 2503 . . . . 5  |-  ( x  =  A  ->  (
x  e.  U. ( R1 " On )  <->  A  e.  U. ( R1 " On ) ) )
16 fveq2 5706 . . . . . 6  |-  ( x  =  A  ->  ( rank `  x )  =  ( rank `  A
) )
17 id 22 . . . . . 6  |-  ( x  =  A  ->  x  =  A )
1816, 17eqeq12d 2457 . . . . 5  |-  ( x  =  A  ->  (
( rank `  x )  =  x  <->  ( rank `  A
)  =  A ) )
1915, 18anbi12d 710 . . . 4  |-  ( x  =  A  ->  (
( x  e.  U. ( R1 " On )  /\  ( rank `  x
)  =  x )  <-> 
( A  e.  U. ( R1 " On )  /\  ( rank `  A
)  =  A ) ) )
2014, 19imbi12d 320 . . 3  |-  ( x  =  A  ->  (
( x  e.  dom  R1 
->  ( x  e.  U. ( R1 " On )  /\  ( rank `  x
)  =  x ) )  <->  ( A  e. 
dom  R1  ->  ( A  e.  U. ( R1
" On )  /\  ( rank `  A )  =  A ) ) ) )
21 ordtr1 4777 . . . . . . . . . 10  |-  ( Ord 
dom  R1  ->  ( ( y  e.  x  /\  x  e.  dom  R1 )  ->  y  e.  dom  R1 ) )
224, 21ax-mp 5 . . . . . . . . 9  |-  ( ( y  e.  x  /\  x  e.  dom  R1 )  ->  y  e.  dom  R1 )
2322ancoms 453 . . . . . . . 8  |-  ( ( x  e.  dom  R1  /\  y  e.  x )  ->  y  e.  dom  R1 )
24 pm5.5 336 . . . . . . . 8  |-  ( y  e.  dom  R1  ->  ( ( y  e.  dom  R1 
->  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  <->  ( y  e. 
U. ( R1 " On )  /\  ( rank `  y )  =  y ) ) )
2523, 24syl 16 . . . . . . 7  |-  ( ( x  e.  dom  R1  /\  y  e.  x )  ->  ( ( y  e.  dom  R1  ->  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  <-> 
( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) ) )
2625ralbidva 2746 . . . . . 6  |-  ( x  e.  dom  R1  ->  ( A. y  e.  x  ( y  e.  dom  R1 
->  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  <->  A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) ) )
27 simplr 754 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
y  e.  x )
28 ordelon 4758 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Ord  dom  R1  /\  x  e.  dom  R1 )  ->  x  e.  On )
294, 28mpan 670 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  dom  R1  ->  x  e.  On )
3029ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  ->  x  e.  On )
31 eloni 4744 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  On  ->  Ord  x )
3230, 31syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  ->  Ord  x )
33 ordelsuc 6446 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  x  /\  Ord  x )  ->  (
y  e.  x  <->  suc  y  C_  x ) )
3427, 32, 33syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
( y  e.  x  <->  suc  y  C_  x )
)
3527, 34mpbid 210 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  ->  suc  y  C_  x )
3623adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
y  e.  dom  R1 )
37 limsuc 6475 . . . . . . . . . . . . . . . . . . . 20  |-  ( Lim 
dom  R1  ->  ( y  e.  dom  R1  <->  suc  y  e. 
dom  R1 ) )
382, 37ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  dom  R1  <->  suc  y  e. 
dom  R1 )
3936, 38sylib 196 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  ->  suc  y  e.  dom  R1 )
40 simpll 753 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  ->  x  e.  dom  R1 )
41 r1ord3g 8001 . . . . . . . . . . . . . . . . . 18  |-  ( ( suc  y  e.  dom  R1 
/\  x  e.  dom  R1 )  ->  ( suc  y  C_  x  ->  ( R1 `  suc  y ) 
C_  ( R1 `  x ) ) )
4239, 40, 41syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
( suc  y  C_  x  ->  ( R1 `  suc  y )  C_  ( R1 `  x ) ) )
4335, 42mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
( R1 `  suc  y )  C_  ( R1 `  x ) )
44 rankidb 8022 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  U. ( R1
" On )  -> 
y  e.  ( R1
`  suc  ( rank `  y ) ) )
4544ad2antrl 727 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
y  e.  ( R1
`  suc  ( rank `  y ) ) )
46 suceq 4799 . . . . . . . . . . . . . . . . . . 19  |-  ( (
rank `  y )  =  y  ->  suc  ( rank `  y )  =  suc  y )
4746ad2antll 728 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  ->  suc  ( rank `  y
)  =  suc  y
)
4847fveq2d 5710 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
( R1 `  suc  ( rank `  y )
)  =  ( R1
`  suc  y )
)
4945, 48eleqtrd 2519 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
y  e.  ( R1
`  suc  y )
)
5043, 49sseldd 3372 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  dom  R1 
/\  y  e.  x
)  /\  ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y ) )  -> 
y  e.  ( R1
`  x ) )
5150ex 434 . . . . . . . . . . . . . 14  |-  ( ( x  e.  dom  R1  /\  y  e.  x )  ->  ( ( y  e.  U. ( R1
" On )  /\  ( rank `  y )  =  y )  -> 
y  e.  ( R1
`  x ) ) )
5251ralimdva 2809 . . . . . . . . . . . . 13  |-  ( x  e.  dom  R1  ->  ( A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y )  ->  A. y  e.  x  y  e.  ( R1 `  x ) ) )
5352imp 429 . . . . . . . . . . . 12  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  A. y  e.  x  y  e.  ( R1 `  x ) )
54 dfss3 3361 . . . . . . . . . . . 12  |-  ( x 
C_  ( R1 `  x )  <->  A. y  e.  x  y  e.  ( R1 `  x ) )
5553, 54sylibr 212 . . . . . . . . . . 11  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  x  C_  ( R1 `  x ) )
56 vex 2990 . . . . . . . . . . . 12  |-  x  e. 
_V
5756elpw 3881 . . . . . . . . . . 11  |-  ( x  e.  ~P ( R1
`  x )  <->  x  C_  ( R1 `  x ) )
5855, 57sylibr 212 . . . . . . . . . 10  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  x  e.  ~P ( R1 `  x
) )
59 r1sucg 7991 . . . . . . . . . . 11  |-  ( x  e.  dom  R1  ->  ( R1 `  suc  x
)  =  ~P ( R1 `  x ) )
6059adantr 465 . . . . . . . . . 10  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  ( R1 ` 
suc  x )  =  ~P ( R1 `  x ) )
6158, 60eleqtrrd 2520 . . . . . . . . 9  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  x  e.  ( R1 `  suc  x
) )
62 r1elwf 8018 . . . . . . . . 9  |-  ( x  e.  ( R1 `  suc  x )  ->  x  e.  U. ( R1 " On ) )
6361, 62syl 16 . . . . . . . 8  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  x  e.  U. ( R1 " On ) )
64 rankval3b 8048 . . . . . . . . . 10  |-  ( x  e.  U. ( R1
" On )  -> 
( rank `  x )  =  |^| { z  e.  On  |  A. y  e.  x  ( rank `  y )  e.  z } )
6563, 64syl 16 . . . . . . . . 9  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  ( rank `  x )  =  |^| { z  e.  On  |  A. y  e.  x  ( rank `  y )  e.  z } )
66 eleq1 2503 . . . . . . . . . . . . . . . 16  |-  ( (
rank `  y )  =  y  ->  ( (
rank `  y )  e.  z  <->  y  e.  z ) )
6766adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y )  -> 
( ( rank `  y
)  e.  z  <->  y  e.  z ) )
6867ralimi 2806 . . . . . . . . . . . . . 14  |-  ( A. y  e.  x  (
y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y )  ->  A. y  e.  x  ( ( rank `  y
)  e.  z  <->  y  e.  z ) )
69 ralbi 2868 . . . . . . . . . . . . . 14  |-  ( A. y  e.  x  (
( rank `  y )  e.  z  <->  y  e.  z )  ->  ( A. y  e.  x  ( rank `  y )  e.  z  <->  A. y  e.  x  y  e.  z )
)
7068, 69syl 16 . . . . . . . . . . . . 13  |-  ( A. y  e.  x  (
y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y )  -> 
( A. y  e.  x  ( rank `  y
)  e.  z  <->  A. y  e.  x  y  e.  z ) )
71 dfss3 3361 . . . . . . . . . . . . 13  |-  ( x 
C_  z  <->  A. y  e.  x  y  e.  z )
7270, 71syl6bbr 263 . . . . . . . . . . . 12  |-  ( A. y  e.  x  (
y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y )  -> 
( A. y  e.  x  ( rank `  y
)  e.  z  <->  x  C_  z
) )
7372rabbidv 2979 . . . . . . . . . . 11  |-  ( A. y  e.  x  (
y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y )  ->  { z  e.  On  |  A. y  e.  x  ( rank `  y )  e.  z }  =  {
z  e.  On  |  x  C_  z } )
7473inteqd 4148 . . . . . . . . . 10  |-  ( A. y  e.  x  (
y  e.  U. ( R1 " On )  /\  ( rank `  y )  =  y )  ->  |^| { z  e.  On  |  A. y  e.  x  ( rank `  y )  e.  z }  =  |^| { z  e.  On  |  x  C_  z } )
7574adantl 466 . . . . . . . . 9  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  |^| { z  e.  On  |  A. y  e.  x  ( rank `  y )  e.  z }  =  |^| { z  e.  On  |  x  C_  z } )
7629adantr 465 . . . . . . . . . 10  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  x  e.  On )
77 intmin 4163 . . . . . . . . . 10  |-  ( x  e.  On  ->  |^| { z  e.  On  |  x 
C_  z }  =  x )
7876, 77syl 16 . . . . . . . . 9  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  |^| { z  e.  On  |  x 
C_  z }  =  x )
7965, 75, 783eqtrd 2479 . . . . . . . 8  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  ( rank `  x )  =  x )
8063, 79jca 532 . . . . . . 7  |-  ( ( x  e.  dom  R1  /\ 
A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  ( x  e.  U. ( R1 " On )  /\  ( rank `  x )  =  x ) )
8180ex 434 . . . . . 6  |-  ( x  e.  dom  R1  ->  ( A. y  e.  x  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y )  ->  ( x  e. 
U. ( R1 " On )  /\  ( rank `  x )  =  x ) ) )
8226, 81sylbid 215 . . . . 5  |-  ( x  e.  dom  R1  ->  ( A. y  e.  x  ( y  e.  dom  R1 
->  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  ( x  e.  U. ( R1 " On )  /\  ( rank `  x )  =  x ) ) )
8382com12 31 . . . 4  |-  ( A. y  e.  x  (
y  e.  dom  R1  ->  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  ( x  e.  dom  R1  ->  (
x  e.  U. ( R1 " On )  /\  ( rank `  x )  =  x ) ) )
8483a1i 11 . . 3  |-  ( x  e.  On  ->  ( A. y  e.  x  ( y  e.  dom  R1 
->  ( y  e.  U. ( R1 " On )  /\  ( rank `  y
)  =  y ) )  ->  ( x  e.  dom  R1  ->  (
x  e.  U. ( R1 " On )  /\  ( rank `  x )  =  x ) ) ) )
8513, 20, 84tfis3 6483 . 2  |-  ( A  e.  On  ->  ( A  e.  dom  R1  ->  ( A  e.  U. ( R1 " On )  /\  ( rank `  A )  =  A ) ) )
866, 85mpcom 36 1  |-  ( A  e.  dom  R1  ->  ( A  e.  U. ( R1 " On )  /\  ( rank `  A )  =  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2730   {crab 2734    C_ wss 3343   ~Pcpw 3875   U.cuni 4106   |^|cint 4143   Ord word 4733   Oncon0 4734   Lim wlim 4735   suc csuc 4736   dom cdm 4855   "cima 4858   Fun wfun 5427   ` cfv 5433   R1cr1 7984   rankcrnk 7985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2735  df-rex 2736  df-reu 2737  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-pss 3359  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-tp 3897  df-op 3899  df-uni 4107  df-int 4144  df-iun 4188  df-br 4308  df-opab 4366  df-mpt 4367  df-tr 4401  df-eprel 4647  df-id 4651  df-po 4656  df-so 4657  df-fr 4694  df-we 4696  df-ord 4737  df-on 4738  df-lim 4739  df-suc 4740  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-om 6492  df-recs 6847  df-rdg 6881  df-r1 7986  df-rank 7987
This theorem is referenced by:  rankonid  8051  onwf  8052  onssr1  8053
  Copyright terms: Public domain W3C validator