MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankelb Structured version   Unicode version

Theorem rankelb 8141
Description: The membership relation is inherited by the rank function. Proposition 9.16 of [TakeutiZaring] p. 79. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankelb  |-  ( B  e.  U. ( R1
" On )  -> 
( A  e.  B  ->  ( rank `  A
)  e.  ( rank `  B ) ) )

Proof of Theorem rankelb
StepHypRef Expression
1 r1elssi 8122 . . . . . 6  |-  ( B  e.  U. ( R1
" On )  ->  B  C_  U. ( R1
" On ) )
21sseld 3462 . . . . 5  |-  ( B  e.  U. ( R1
" On )  -> 
( A  e.  B  ->  A  e.  U. ( R1 " On ) ) )
3 rankidn 8139 . . . . 5  |-  ( A  e.  U. ( R1
" On )  ->  -.  A  e.  ( R1 `  ( rank `  A
) ) )
42, 3syl6 33 . . . 4  |-  ( B  e.  U. ( R1
" On )  -> 
( A  e.  B  ->  -.  A  e.  ( R1 `  ( rank `  A ) ) ) )
54imp 429 . . 3  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  -.  A  e.  ( R1 `  ( rank `  A ) ) )
6 rankon 8112 . . . . 5  |-  ( rank `  B )  e.  On
7 rankon 8112 . . . . 5  |-  ( rank `  A )  e.  On
8 ontri1 4860 . . . . 5  |-  ( ( ( rank `  B
)  e.  On  /\  ( rank `  A )  e.  On )  ->  (
( rank `  B )  C_  ( rank `  A
)  <->  -.  ( rank `  A )  e.  (
rank `  B )
) )
96, 7, 8mp2an 672 . . . 4  |-  ( (
rank `  B )  C_  ( rank `  A
)  <->  -.  ( rank `  A )  e.  (
rank `  B )
)
10 rankdmr1 8118 . . . . . 6  |-  ( rank `  B )  e.  dom  R1
11 rankdmr1 8118 . . . . . 6  |-  ( rank `  A )  e.  dom  R1
12 r1ord3g 8096 . . . . . 6  |-  ( ( ( rank `  B
)  e.  dom  R1  /\  ( rank `  A
)  e.  dom  R1 )  ->  ( ( rank `  B )  C_  ( rank `  A )  -> 
( R1 `  ( rank `  B ) ) 
C_  ( R1 `  ( rank `  A )
) ) )
1310, 11, 12mp2an 672 . . . . 5  |-  ( (
rank `  B )  C_  ( rank `  A
)  ->  ( R1 `  ( rank `  B
) )  C_  ( R1 `  ( rank `  A
) ) )
14 r1rankidb 8121 . . . . . . 7  |-  ( B  e.  U. ( R1
" On )  ->  B  C_  ( R1 `  ( rank `  B )
) )
1514sselda 3463 . . . . . 6  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  A  e.  ( R1
`  ( rank `  B
) ) )
16 ssel 3457 . . . . . 6  |-  ( ( R1 `  ( rank `  B ) )  C_  ( R1 `  ( rank `  A ) )  -> 
( A  e.  ( R1 `  ( rank `  B ) )  ->  A  e.  ( R1 `  ( rank `  A
) ) ) )
1715, 16syl5com 30 . . . . 5  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  ( ( R1 `  ( rank `  B )
)  C_  ( R1 `  ( rank `  A
) )  ->  A  e.  ( R1 `  ( rank `  A ) ) ) )
1813, 17syl5 32 . . . 4  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  ( ( rank `  B
)  C_  ( rank `  A )  ->  A  e.  ( R1 `  ( rank `  A ) ) ) )
199, 18syl5bir 218 . . 3  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  ( -.  ( rank `  A )  e.  (
rank `  B )  ->  A  e.  ( R1
`  ( rank `  A
) ) ) )
205, 19mt3d 125 . 2  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  ( rank `  A
)  e.  ( rank `  B ) )
2120ex 434 1  |-  ( B  e.  U. ( R1
" On )  -> 
( A  e.  B  ->  ( rank `  A
)  e.  ( rank `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1758    C_ wss 3435   U.cuni 4198   Oncon0 4826   dom cdm 4947   "cima 4950   ` cfv 5525   R1cr1 8079   rankcrnk 8080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-reu 2805  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-int 4236  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-om 6586  df-recs 6941  df-rdg 6975  df-r1 8081  df-rank 8082
This theorem is referenced by:  wfelirr  8142  rankval3b  8143  rankel  8156  rankunb  8167  rankuni2b  8170  rankcf  9054
  Copyright terms: Public domain W3C validator